【題目】如圖,已知Rt△ABC中,∠ACB=90°.請(qǐng)完成以下任務(wù).
(1)尺規(guī)作圖:①作∠A的平分線,交CB于點(diǎn)D;
②過點(diǎn)D作AB的垂線,垂足為點(diǎn)E.請(qǐng)保留作圖痕跡,不寫作法,并標(biāo)明字母.
(2)若AC=3,BC=4,求CD的長.
【答案】(1)①作圖見解析;②作圖見解析;(2)CD=.
【解析】
(1)①按作角平分線的步驟(以點(diǎn)A為圓心,以任意長為半徑畫弧,與角的兩邊各有一個(gè)交點(diǎn),分別以這兩個(gè)交點(diǎn)為圓心,以大于這兩點(diǎn)距離的一半為半徑畫弧,兩弧在角內(nèi)交于一點(diǎn),過點(diǎn)A以及這個(gè)交點(diǎn)作射線即可)進(jìn)行作圖即可得;
②根據(jù)過直線外一點(diǎn)作直線的垂線的方法(以點(diǎn)D為圓心,以大于點(diǎn)D到直線AB的距離為半徑畫弧,與AB交于兩點(diǎn),分別以這兩點(diǎn)為圓心,以大于這兩點(diǎn)的距離的一半畫弧,兩弧交于一點(diǎn),過點(diǎn)D以及這個(gè)交點(diǎn)畫直線即可)進(jìn)行作圖即可得;
(2)在Rt△ABC中,由勾股定理可求得AB的長,根據(jù)作圖可知DE=DC,∠AED=∠C=90°,再根據(jù)S△ACD+S△ABD=S△ABC,列式計(jì)算即可得答案.
(1)如圖所示:①AD是∠A的平分線;
②DE是AB的垂線;
(2)在Rt△ABC中,由勾股定理得:
AB==5,
由作圖過程可知:DE=DC,∠AED=∠C=90°,
∵S△ACD+S△ABD=S△ABC,
∴ACCD+ABDE=ACBC,
∴×3×CD+×5×CD=×3×4,
解得:CD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從,,,四個(gè)數(shù)中任取兩個(gè)數(shù)作為,分別代入一元二次方程中,那么所有的一元二次方程中有實(shí)數(shù)解的一元二次方程的概率為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛.設(shè)行駛的時(shí)間為(時(shí)),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與之間的函數(shù)關(guān)系.
(1)根據(jù)圖中信息,可知甲乙兩地之間的距離為 千米,兩車出發(fā) 小時(shí)相遇;
(2)已知兩車相遇時(shí)快車比慢車多行駛40千米,求快車從甲地到達(dá)乙地所需時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,“春節(jié)期間”,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為y甲(元),在乙園所需總費(fèi)用為y乙(元),y甲、y乙與之間的函數(shù)關(guān)系如圖所示,折線OAB表示y乙與之間的函數(shù)關(guān)系.
(1)甲采摘園的門票是 元,在乙園采摘草莓超過______后超過部分有打折優(yōu)惠;
(2)當(dāng)采摘量時(shí),采摘多少千克草莓,甲、乙兩家采摘園的總費(fèi)用相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=2,AC=,AD是△ABC的高,且 BD=1.
(1)求 BC的長.
(2)E是邊AC上的一點(diǎn),作射線BE,分別過點(diǎn)A、C 作 AF⊥BE于點(diǎn) F,CG⊥BE于點(diǎn) G,如圖2,若 BE=,求 AF與 CG的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖(1)所示的圖形,像我們常見的學(xué)習(xí)用品一圓規(guī),我們,不妨把這樣圖形叫做“規(guī)形圖
(1)觀察“規(guī)形圖(1)”,試探究∠BDC與∠A、∠B、∠C之間的數(shù)量關(guān)系,并說明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下問題:
①如圖(2),把一塊三角尺XYZ放置在△ABC上使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=40°,則∠ABX+∠ACX= °.
②如圖(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.以AB為邊作菱形ABCD,使點(diǎn)C在x軸正半軸上,點(diǎn)D在第一象限,則點(diǎn)D的坐標(biāo)為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com