精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,矩形OABC擺放在平面直角坐標系中,點Ax軸上,點Cy軸上,OA3,OC2,過點A的直線交矩形OABC的邊BC于點P,且點P不與點B、C重合,過點P作∠CPD=∠APB,PDx軸于點D,交y軸于點E

(1)若△APD為等腰直角三角形.

求直線AP的函數解析式;

x軸上另有一點G的坐標為(20),請在直線APy軸上分別找一點M、N,使△GMN的周長最小,并求出此時點N的坐標和△GMN周長的最小值.

(2)如圖2,過點EEFAPx軸于點F,若以AP、E、F為頂點的四邊形是平行四邊形,求直線PE的解析式.

【答案】1)①y=﹣x+3,②N0, ),;(2 y2x2.

【解析】

1)①由矩形的性質和等腰直角三角形的性質可求得∠BAP=∠BPA45°,從而可得BPAB2,進而得到點P的坐標,再根據A、P兩點的坐標從而可求AP的函數解析式;

②作G點關于y軸對稱點G'(﹣20),作點G關于直線AP對稱點G'31),連接G'G'y軸于N,交直線AP M,此時GMN周長的最小,根據點G'G'兩點的坐標,求出其解析式,然后再根據一次函數的性質即可求解;

2)根據矩形的性質以及已知條件求得PD=PA,進而求得DM=AM,根據平行四邊形的性質得出PD=DE,然后通過得出△PDM≌△EDO得出點E和點P的坐標,即可求得.

解:(1)①∵矩形OABC,OA3,OC2,

A3,0),C0,2),B3,2),

AOBC,AOBC3,∠B90°,COAB2,

∵△APD為等腰直角三角形,

∴∠PAD45°,

AOBC

∴∠BPA=∠PAD45°,

∵∠B90°

∴∠BAP=∠BPA45°,

BPAB2,

P1,2),

設直線AP解析式ykx+b

∵過點A,點P,

,

∴直線AP解析式y=﹣x+3;

②如圖所示:

G點關于y軸對稱點G'(﹣2,0),作點G關于直線AP對稱點G'3,1

連接G'G'y軸于N,交直線AP M,此時GMN周長的最小,

G'(﹣2,0),G'3,1

∴直線G'G'解析式yx+

x0時,y,

N0,),

G'G',

∴△GMN周長的最小值為;

2)如圖:作PMADM,

BCOA

∴∠CPD=∠PDA且∠CPD=∠APB,

PDPA,且PMAD,

DMAM

∵四邊形PAEF是平行四邊形

PDDE

又∵∠PMD=∠DOE,∠ODE=∠PDM

∴△PMD≌△EOD

ODDM,OEPM

ODDMMA,

PM2,OA3

OE2,OM2

E0,﹣2),P22

設直線PE的解析式ymx+n

∴直線PE解析式y2x2.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】每年農歷五月初五,是中國民間的傳統(tǒng)節(jié)日——端午節(jié).它始于我國的春秋戰(zhàn)國時期,已列為世界非物質文化遺產.時至今日,端午節(jié)在我國仍是一個十分盛行的節(jié)日.今年端午節(jié),某地甲、乙兩家超市為吸引更多的顧客,開展促銷活動,對某種質量和售價相同的粽子分別推出了不同的優(yōu)惠方案.甲超市的方案是:購買該種粽子超過80元后,超出80元的部分按九折收費;乙超市的方案是:購買該種粽子超過120元后,超出120元的部分按八折收費.請根據顧客購買粽子的金額,選擇到哪家超市購買粽子劃算?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖ABC中,分別延長邊AB,BCCA,使得BDAB,CE2BC,AF3CA,若ABC的面積為1,則DEF的面積為( )

A. 12B. 14C. 16D. 18

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校開設了豐富多彩的實踐類拓展課程,分別設置了體育類、藝術類、文學類及其它類課程(要求人人參與,每人只能選擇一門課程).為了解學生喜愛的拓展課類別,學校做了一次抽樣調查.根據收集到的數據,繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,完成下列問題:

(1)此次共調查了多少人?

(2)請將條形統(tǒng)計圖補充完整

(3)求文學類課程在扇形統(tǒng)計圖中所占圓心角的度數;

(4)若該校有1500名學生,請估計喜歡體育類拓展課的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖所示的正方形網格中,每個小正方形的邊長都是1個單位長度,的頂點均在格點上.(畫圖要求:先用鉛筆畫圖,然后用黑色水筆描畫)

1)①畫出繞點按逆時針方向旋轉后的;

②連結,請判斷是怎樣的三角形,并簡要說明理由.

2)畫出,使關于點成中心對稱;

3)請指出如何平移,使得能拼成一個長方形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在中,平分),上一點,且于點.

1)當,時,求的度數;

2)若,請結合(1)的計算猜想、、之間的數量關系,直接寫出答案,不說明理由;(用含有、的式子表示

3)如圖②,當點的延長線上時,其余條件不變,則(2)中的結論還成立嗎?若成立,請說明為什么;若不成立,請寫出成立的結論,并說明為什么.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正方形ABCD中,點E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點A旋轉,使點E落在直線BC上的點F處,則F、C兩點的距離為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現將直角邊AC沿直線AD對折,使它落在斜邊AB上,且與AE重合,則CD等于( )

A. 3cmB. 4cmC. 5cmD. 6cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先填寫表,通過觀察后再回答問題:

a

……

0.0001

0.01

1

100

10000

……

……

0.01

x

1

y

100

……

(1)表格中,x=_________,y=_________

(2)從表格中探究a數位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:

①已知,則≈___________

②已知,若,用含m的代數式表示b,則b=___________

(3)試比較a的大。ㄖ苯訉懗鼋Y果)

查看答案和解析>>

同步練習冊答案