【題目】如圖1,矩形OABC擺放在平面直角坐標系中,點A在x軸上,點C在y軸上,OA=3,OC=2,過點A的直線交矩形OABC的邊BC于點P,且點P不與點B、C重合,過點P作∠CPD=∠APB,PD交x軸于點D,交y軸于點E.
(1)若△APD為等腰直角三角形.
①求直線AP的函數解析式;
②在x軸上另有一點G的坐標為(2,0),請在直線AP和y軸上分別找一點M、N,使△GMN的周長最小,并求出此時點N的坐標和△GMN周長的最小值.
(2)如圖2,過點E作EF∥AP交x軸于點F,若以A、P、E、F為頂點的四邊形是平行四邊形,求直線PE的解析式.
【答案】(1)①y=﹣x+3,②N(0, ),;(2) y=2x﹣2.
【解析】
(1)①由矩形的性質和等腰直角三角形的性質可求得∠BAP=∠BPA=45°,從而可得BP=AB=2,進而得到點P的坐標,再根據A、P兩點的坐標從而可求AP的函數解析式;
②作G點關于y軸對稱點G'(﹣2,0),作點G關于直線AP對稱點G'(3,1),連接G'G'交y軸于N,交直線AP 于M,此時△GMN周長的最小,根據點G'、G'兩點的坐標,求出其解析式,然后再根據一次函數的性質即可求解;
(2)根據矩形的性質以及已知條件求得PD=PA,進而求得DM=AM,根據平行四邊形的性質得出PD=DE,然后通過得出△PDM≌△EDO得出點E和點P的坐標,即可求得.
解:(1)①∵矩形OABC,OA=3,OC=2,
∴A(3,0),C(0,2),B(3,2),
AO∥BC,AO=BC=3,∠B=90°,CO=AB=2,
∵△APD為等腰直角三角形,
∴∠PAD=45°,
∵AO∥BC,
∴∠BPA=∠PAD=45°,
∵∠B=90°,
∴∠BAP=∠BPA=45°,
∴BP=AB=2,
∴P(1,2),
設直線AP解析式y=kx+b,
∵過點A,點P,
∴
∴ ,
∴直線AP解析式y=﹣x+3;
②如圖所示:
作G點關于y軸對稱點G'(﹣2,0),作點G關于直線AP對稱點G'(3,1)
連接G'G'交y軸于N,交直線AP 于M,此時△GMN周長的最小,
∵G'(﹣2,0),G'(3,1)
∴直線G'G'解析式y=x+
當x=0時,y=,
∴N(0,),
∵G'G'=,
∴△GMN周長的最小值為;
(2)如圖:作PM⊥AD于M,
∵BC∥OA
∴∠CPD=∠PDA且∠CPD=∠APB,
∴PD=PA,且PM⊥AD,
∴DM=AM,
∵四邊形PAEF是平行四邊形
∴PD=DE
又∵∠PMD=∠DOE,∠ODE=∠PDM
∴△PMD≌△EOD,
∴OD=DM,OE=PM,
∴OD=DM=MA,
∵PM=2,OA=3,
∴OE=2,OM=2
∴E(0,﹣2),P(2,2)
設直線PE的解析式y=mx+n
∴
∴直線PE解析式y=2x﹣2.
科目:初中數學 來源: 題型:
【題目】每年農歷五月初五,是中國民間的傳統(tǒng)節(jié)日——端午節(jié).它始于我國的春秋戰(zhàn)國時期,已列為世界非物質文化遺產.時至今日,端午節(jié)在我國仍是一個十分盛行的節(jié)日.今年端午節(jié),某地甲、乙兩家超市為吸引更多的顧客,開展促銷活動,對某種質量和售價相同的粽子分別推出了不同的優(yōu)惠方案.甲超市的方案是:購買該種粽子超過80元后,超出80元的部分按九折收費;乙超市的方案是:購買該種粽子超過120元后,超出120元的部分按八折收費.請根據顧客購買粽子的金額,選擇到哪家超市購買粽子劃算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖△ABC中,分別延長邊AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面積為1,則△DEF的面積為( )
A. 12B. 14C. 16D. 18
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校開設了豐富多彩的實踐類拓展課程,分別設置了體育類、藝術類、文學類及其它類課程(要求人人參與,每人只能選擇一門課程).為了解學生喜愛的拓展課類別,學校做了一次抽樣調查.根據收集到的數據,繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,完成下列問題:
(1)此次共調查了多少人?
(2)請將條形統(tǒng)計圖補充完整
(3)求文學類課程在扇形統(tǒng)計圖中所占圓心角的度數;
(4)若該校有1500名學生,請估計喜歡體育類拓展課的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的正方形網格中,每個小正方形的邊長都是1個單位長度,的頂點均在格點上.(畫圖要求:先用鉛筆畫圖,然后用黑色水筆描畫)
(1)①畫出繞點按逆時針方向旋轉后的;
②連結,請判斷是怎樣的三角形,并簡要說明理由.
(2)畫出,使和關于點成中心對稱;
(3)請指出如何平移,使得和能拼成一個長方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在中,平分(),為上一點,且于點.
(1)當,時,求的度數;
(2)若,,請結合(1)的計算猜想、、之間的數量關系,直接寫出答案,不說明理由;(用含有、的式子表示)
(3)如圖②,當點在的延長線上時,其余條件不變,則(2)中的結論還成立嗎?若成立,請說明為什么;若不成立,請寫出成立的結論,并說明為什么.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD中,點E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點A旋轉,使點E落在直線BC上的點F處,則F、C兩點的距離為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現將直角邊AC沿直線AD對折,使它落在斜邊AB上,且與AE重合,則CD等于( )
A. 3cmB. 4cmC. 5cmD. 6cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先填寫表,通過觀察后再回答問題:
a | …… | 0.0001 | 0.01 | 1 | 100 | 10000 | …… |
…… | 0.01 | x | 1 | y | 100 | …… |
(1)表格中,x=_________,y=_________
(2)從表格中探究a與數位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:
①已知,則≈___________
②已知,若,用含m的代數式表示b,則b=___________
(3)試比較與a的大。ㄖ苯訉懗鼋Y果)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com