如圖,過⊙O外一點M作⊙O的兩條切線,切點為A、B,連接AB、OA、OB、C、D在⊙O上居于弦AB兩端,過點D作⊙O的切線交MA、MB于E、F,連接OE、OF、CA、CB,則圖中與∠ACB相等的角(不包含∠ACB)有( 。
分析:由過⊙O外一點M作⊙O的兩條切線,切點為A、B,易得∠AOM=∠BOM=
1
2
∠AOB,又由∠ACB=
1
2
∠AOB,即可得∠AOM=∠BOM=∠ACB,然后由連接OD,OD是⊙O的切線,同理可得:∠AOE=∠DOE,∠BOF=∠DOF,即可得∠EOF=
1
2
∠AOB,則可得∠EOF=∠ACB.
解答:解:∵過⊙O外一點M作⊙O的兩條切線,切點為A、B,
∴∠AMO=∠BMO,OA⊥AM,OB⊥BM,
∴∠AOM=∠BOM=
1
2
∠AOB,
∵∠ACB=
1
2
∠AOB,
∴∠AOM=∠BOM=∠ACB;
連接OD,
∵OD是⊙O的切線,
同理可得:∠AOE=∠DOE,∠BOF=∠DOF,
∴∠EOF=∠EOD+∠DOF=
1
2
∠AOB,
∴∠EOF=∠ACB;
∴圖中與∠ACB相等的角(不包含∠ACB)有3個.
故選A.
點評:此題考查了切線的性質(zhì)以及圓周角定理.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,過⊙O外一點A向⊙O引割線AEB,ADC,DF∥BC,交AB于F.若CE過圓心O,D是AC中點.
(1)求證:DF是⊙O的切線;
(2)若FE,F(xiàn)B的長是方程x2-mx+b2=0(b>0)的兩個根,且△DEF與△CBE相似.
①試用m的代數(shù)式表示b;
②代數(shù)式3bm-8
3
b+7
的值達到最小時,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,過⊙O外一點A引切線AB、AC,B、C為切點,若∠BAC=60°,BC=8cm,則⊙O的直徑是
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,過⊙O外一點P作兩條切線,切點分別為A、B,C為劣弧AB上一點,若∠ACB=122°,則∠APB=
64°
64°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•安慶一模)如圖,過⊙O外一點P作⊙O的兩條切線PA、PB,切點分別為A、B.下列結(jié)論中,正確的是
①③⑤
①③⑤

①OP垂直平分AB;
②∠APB=∠BOP;
③△ACP≌△BCP;
④PA=AB;
⑤若∠APB=80°,則∠OBA=40°.

查看答案和解析>>

同步練習冊答案