【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標原點O,矩形的邊分別平行于坐標軸,反比例函數(shù)(k>0)的圖象分別與BC、CD交于點M、N.若點A(-2,-2),且△OMN的面積為,則k=( )

(A)2.5 (B)2 (C)1.5 (D)1

【答案】B

【解析】分析:過點MMQx軸于點QS四邊形EOFS四邊形CHOG,設(shè)C(a),分別用含a,k的式子表示點M,N的坐標,根據(jù)SOMNS梯形MNGQ.列方程求k.

詳解:過點MMQx軸于點Q,

因為S四邊形EOFS四邊形CHOG,所以CG·CH=4,

設(shè)C(a,),則M(,),N(a,).

SOMHSONGSOMQ

因為S五邊形OMNGSOMNSONGSOMQS梯形MNGQ.

所以SOMNS梯形MNGQ.

)(a),解得k=2.

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面三行數(shù):

2,﹣4,8,﹣16,32,﹣64,

4,﹣2,10,﹣14,34,﹣62,

12,﹣48,﹣16,32,

在上面三行數(shù)的第n列中,從上往下的三個數(shù)分別記為ab,c,觀察這些數(shù)的特點,根據(jù)你所得到的規(guī)律,解答下列為問題.

1)用含n的式子分別表示出a,b,c;

2)根據(jù)(1)的結(jié)論,若a,b,c三個數(shù)的和為770,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增.計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%15%5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:㎡),繪制了統(tǒng)計圖,如圖所示,下面有四個推斷:

年用水量不超過180㎡的該市居民家庭按第一檔水價交費

年用水量超過240㎡的該市居民家庭按第三檔水價交費

該市居民家庭年用水量的中位數(shù)在150-180之間

該市居民家庭年用水量的平均數(shù)不超過180

正確的是

A.①③ B.①④ C.②③ D.②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,∠B=60°,∠ADC=105°,AD=6,且AC⊥AB,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P的坐標為(x1,y1),點Q的坐標為(x2,y2),且x1x2y1y2,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點P,Q的“相關(guān)矩形”,如圖為點P,Q的“相關(guān)矩形”示意圖.

(1)已知點A的坐標為(1,0),

①若點B的坐標為(3,1),求點A,B的“相關(guān)矩形”的面積;

②點C在直線x=3上,若點AC的“相關(guān)矩形”為正方形,求直線AC的表達式;

(2)正方形RSKT頂點R的坐標為(-1,1),K的坐標為(2,-2),點M的坐標為(m,3),若在正方形RSKT邊上存在一點N,使得點M,N的“相關(guān)矩形”為正方形,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DBC上一點,DEAB,交AC于點E,DFAC,交ABF

1)直接寫出圖中與∠BAC構(gòu)成的同旁內(nèi)角.

2)請說明∠A與∠EDF相等的理由.

3)若∠BDE +∠CDF234°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC:∠BOC21,將直角三角板的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.

1)在圖1中,∠AOC   °,∠MOC   °;

2)將圖1中的三角板按圖2的位置放置,使得OM在射線QA上,求∠CON的度數(shù);

3)將上述直角三角板按圖3的位置放置,OM在∠BOC的內(nèi)部,說明∠BON﹣∠COM的值固定不變.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點,連接BM,MN,BN.BAD=60°,AC平分∠BAD,AC=2,BN的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A=2x2+3xy-2x-1,B=-x2+xy-1,且3A+6B的值與x無關(guān),求y的值.

查看答案和解析>>

同步練習冊答案