【題目】如圖,點(diǎn)D、E、F分別為△ABC的三邊中點(diǎn),試說明△ABC∽△EFD.
【答案】證明:∵點(diǎn)D、E、F分別為△ABC的三邊中點(diǎn), ∴DE、DF、EF分別為△ABC的中位線,
∴DE= AC,DF= BC,EF= AB(中位線定理),
∴ ,
∴△ABC∽△EFD(三邊對應(yīng)成比例的兩個三角形相似)
【解析】先根據(jù)點(diǎn)D、E、F分別為△ABC的三邊中點(diǎn),求出DE、DF、EF分別為△ABC的中位線,然后根據(jù)三邊對應(yīng)成比例的兩個三角形相似進(jìn)行求解即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的判定的相關(guān)知識,掌握相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測試,各項成績?nèi)缦拢▎挝唬悍郑?/span>
數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計與概率 | 綜合與實踐 | |
學(xué)生甲 | 90 | 93 | 89 | 90 |
學(xué)生乙 | 94 | 92 | 94 | 86 |
(1)分別計算甲、乙成績的中位數(shù);
(2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計與概率、綜合與實踐的成績按3:3:2:2計算,那么甲、乙的數(shù)學(xué)綜合素質(zhì)成績分別為多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息: 請結(jié)合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進(jìn)貨單價;
(2)已知甲、乙兩種商品的零售單價分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調(diào)查發(fā)現(xiàn),甲種商品零售單價每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價下降m(m>0)元,在不考慮其他因素的條件下,求當(dāng)m為何值時,商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價﹣進(jìn)貨單價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=-2x+6與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)點(diǎn)A的坐標(biāo)為________,點(diǎn)B的坐標(biāo)為________.
(2)求△AOB的面積.
(3)直線AB上是否存在一點(diǎn)C(點(diǎn)C與點(diǎn)B不重合),使△AOC的面積等于△AOB的面積?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計圖中,求A類對應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論: ①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .
其中正確的序號是(把你認(rèn)為正確的都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,AD是∠BAC的平分線.
(1)尺規(guī)作圖:過點(diǎn)D作DE⊥AC于E;
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程tx2﹣(3t+2)x+2t+2=0(t>0)
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設(shè)方程的兩個實數(shù)根分別為x1 , x2(其中x1<x2),若y是關(guān)于t的函數(shù),且y=x2﹣2x1 , 求這個函數(shù)的解析式,并畫出函數(shù)圖象;
(3)觀察(2)中的函數(shù)圖象,當(dāng)y≥2t時,寫出自變量t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com