【題目】宏興企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:y= .
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?
(2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關(guān)系式,并求出第幾天時,利潤最大,最大利潤是多少?
【答案】
(1)
解:根據(jù)題意,得:
∵若7.5x=70,得:x= >4,不符合題意;
∴5x+10=70,
解得:x=12,
答:工人甲第12天生產(chǎn)的產(chǎn)品數(shù)量為70件
(2)
解:由函數(shù)圖象知,當(dāng)0≤x≤4時,P=40,
當(dāng)4<x≤14時,設(shè)P=kx+b,
將(4,40)、(14,50)代入,得: ,
解得: ,
∴P=x+36;
①當(dāng)0≤x≤4時,W=(60﹣40)7.5x=150x,
∵W隨x的增大而增大,
∴當(dāng)x=4時,W最大=600元;
②當(dāng)4<x≤14時,W=(60﹣x﹣36)(5x+10)=﹣5x2+110x+240=﹣5(x﹣11)2+845,
∴當(dāng)x=11時,W最大=845,
∵845>600,
∴當(dāng)x=11時,W取得最大值,845元,
答:第11天時,利潤最大,最大利潤是845元
【解析】(1)根據(jù)y=70求得x即可;(2)先根據(jù)函數(shù)圖象求得P關(guān)于x的函數(shù)解析式,再結(jié)合x的范圍分類討論,根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質(zhì)求得最值即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解確定一次函數(shù)的表達(dá)式的相關(guān)知識,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊(duì)計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍.
(1)求甲、乙兩個工程隊(duì)每天各修路多少千米?
(2)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬元,要使兩個工程隊(duì)修路總費(fèi)用不超過5.2萬元,甲工程隊(duì)至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.
(i)二次項(xiàng)系數(shù)2=1×2;
(ii)常數(shù)項(xiàng)﹣3=﹣1×3=1×(﹣3),驗(yàn)算:“交叉相乘之和”;
1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5
(iii)發(fā)現(xiàn)第③個“交叉相乘之和”的結(jié)果1×(﹣3)+2×1=﹣1,等于一次項(xiàng)系數(shù)﹣1.
即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,則2x2﹣x﹣3=(x+1)(2x﹣3).
像這樣,通過十字交叉線幫助,把二次三項(xiàng)式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)G在對角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.
(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;
(2)若正方形ABCD的邊長為1,∠AGF=105°,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠C=90°,AC=3,BC=4.分別以點(diǎn)A、B為圓心畫圓.如果點(diǎn)C在⊙A內(nèi),點(diǎn)B在⊙A外,且⊙B與⊙A內(nèi)切,那么⊙B的半徑長r的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑長為1,AB、AC是⊙O的兩條弦,且AB=AC,BO的延長線交AC于點(diǎn)D,聯(lián)結(jié)OA、OC.
(1)求證:△OAD∽△ABD;
(2)當(dāng)△OCD是直角三角形時,求B、C兩點(diǎn)的距離;
(3)記△AOB、△AOD、△COD 的面積分別為S1、S2、S3 , 如果S2是S1和S3的比例中項(xiàng),求OD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展了“手機(jī)伴我健康行”主題活動,他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時間”的問卷調(diào)查,并繪制成如圖①,②的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.
請你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的圓心角度數(shù)是度;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)該校共有學(xué)生1200人,估計每周使用手機(jī)時間在2小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從﹣2,1,3這三個數(shù)中任取兩個不同的數(shù),作為點(diǎn)的坐標(biāo).
(1)寫出該點(diǎn)所有可能的坐標(biāo);
(2)求該點(diǎn)在第一象限的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com