在正方形ABCD中:
(1)如圖①,點E、F分別在BC、CD上,且AE⊥BF,垂足為M.求證:AE=BF.
(2)如圖②,如果點E、F、G、H分別在BC、CD、DA、AB上,且GE⊥HF,垂足M.那么GE、HF相等嗎?證明你的結論.
(3)若將②中的條件“GE⊥HF”改為GE=HF,那么GE、HF有什么位置關系?證明你的結論.
(4)如圖③,在等邊三角形ABC中,點E、F分別在BC、CA上,且BE=CF,你能猜想∠AMF的度數(shù)嗎?證明你的結論.

【答案】分析:有三角形的直接證明三角形全等,沒三角形的構造直角三角形,利用正方形的性質證明三角形全等;對于第4問也是證明三角形全等,再用角等量代換求解.
解答:(1)證明:∵AE⊥BF,
∴∠BAE+∠ABM=90°,∠CBF+∠ABM=90°,
∴∠BAE=∠CBF,
在△BAE和△CBF中
,
△BAE≌△CBF(AAS),
∴AE=BF;


(2)結論:HF=GE
分別過G、H作GT⊥BC、HN⊥CD,
∴GT⊥HN,
∴∠FHN+∠HPO=90°,∠EGT+∠GPM=90°,∠GPM=∠HPO,
∴∠FHN=∠EGT,
∵HN=GT,∠GTE=∠NHF=90°,
∴△GTE≌△HNF,
∴GE=HF;

(3)結論:GE⊥HF
分別過G、H作GT⊥BC、HN⊥CD,
∵GT=HN GE=HF,
∴直角三角形HFN≌直角三角形GTE,
∴∠FHN=∠EGT,
又∵∠FHN+∠HPO=90°,
∠HPO=∠GPM,
∴∠GPM+∠EGT=90°,
∴∠GMP=90°,
∴GE⊥HF;

(4)結論:∠AMF=60°.
在△ABE和△BCF中
,
∴△ABE≌△BCF(SAS),
∴∠BAE=∠CBF,
∴∠ABE=∠BME=60°,
∴∠AMF=∠BME=60°.
點評:本題考查正方形的性質,全等三角形的判定和性質以及作輔助線的能力和適時等量代換的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖所示,在正方形ABCD中,E為AD的中點,F(xiàn)為DC上的一點,且DF=
14
DC.求證:△BEF是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在正方形ABCD中,點G是BC上任意一點,連接AG,過B,D兩點分別作BE⊥AG,DF⊥AG,垂足分別為E,F(xiàn)兩點,求證:△ADF≌△BAE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關系?請寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關系?請直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、在正方形ABCD中,P為對角線BD上一點,PE⊥BC,垂足為E,PF⊥CD,垂足為F,求證:EF=AP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在正方形ABCD中,P是CD上一點,且AP=BC+CP,Q為CD中點,求證:∠BAP=2∠QAD.

查看答案和解析>>

同步練習冊答案