【題目】如圖①,在平面直角坐標(biāo)系中,平行四邊形ABCD在第一象限,且AB∥x軸,直線y=﹣x從原點(diǎn)出發(fā)沿x軸正方向平移,被平行四邊形ABCD截得的線段EF的長(zhǎng)度l與平移的距離m的函數(shù)圖象如圖②,那么平行四邊形ABCD的面積為( )
A.4
B.
C.8
D.
【答案】C
【解析】解:根據(jù)圖象可以得到當(dāng)移動(dòng)的距離是4時(shí),直線經(jīng)過(guò)點(diǎn)A,
當(dāng)移動(dòng)距離是7時(shí),直線經(jīng)過(guò)D,在移動(dòng)距離是8時(shí)經(jīng)過(guò)B,
則AB=8﹣4=4,
當(dāng)直線經(jīng)過(guò)D點(diǎn),設(shè)交AB與N,則DN=2 ,作DM⊥AB于點(diǎn)M.
∵y=﹣x與x軸形成的角是45°,
又∵AB∥x軸,
∴∠DNM=45°,
∴DM=DNsin45°=2 × =2,
則平行四邊形的面積是:ABDM=4×2=8,
故選:C.
【考點(diǎn)精析】掌握函數(shù)的圖象是解答本題的根本,需要知道函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)E、F分別是AD、CE邊上的中點(diǎn),且S△BEF=4cm2 , 則S△ABC的值為( )
A.1cm2
B.2cm2
C.8cm2
D.16cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分別繞直線AB,CD旋轉(zhuǎn)一周,所得幾何體的表面積分別為S1 , S2 , 則|S1﹣S2|=(平方單位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O過(guò)點(diǎn)B、C,圓心O在等腰直角三角形ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為( )
A.6
B.13
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB= ,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電腦公司經(jīng)銷甲種型號(hào)電腦,今年三月份的電腦售價(jià)比去年同期每臺(tái)降價(jià)1000元,如果賣出相同數(shù)量的電腦,去年銷售額為10萬(wàn)元,今年銷售額只有8萬(wàn)元.
(1)今年三月份甲種電腦每臺(tái)售價(jià)多少元?
(2)為了增加收入,電腦公司決定再經(jīng)銷乙種型號(hào)電腦.已知甲種電腦每臺(tái)進(jìn)價(jià)為3500元,乙種電腦每臺(tái)進(jìn)價(jià)為3000元,公司預(yù)計(jì)用不多于5萬(wàn)元且不少于4.8萬(wàn)元的資金購(gòu)進(jìn)這兩種電腦共15臺(tái),有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,平行四邊形ABCD在第一象限,且AB∥x軸,直線y=﹣x從原點(diǎn)出發(fā)沿x軸正方向平移,被平行四邊形ABCD截得的線段EF的長(zhǎng)度l與平移的距離m的函數(shù)圖象如圖②,那么平行四邊形ABCD的面積為( )
A.4
B.
C.8
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12m,寬是4m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點(diǎn)C到墻面OB的水平距離為3m時(shí),到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過(guò)?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四條線段a,b,c,d如圖,a:b:c:d=1:2:3:4
(1)選擇其中的三條線段為邊作一個(gè)三角形(尺規(guī)作圖,要求保留作圖痕跡,不必寫出作法);
(2)任取三條線段,求以它們?yōu)檫吥茏鞒鋈切蔚母怕剩?/span>
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com