如圖,在三角形紙片ABC中,∠A=65°,∠B=75°,將紙片的一角折疊(折痕為DE),使點C落在△ABC內(nèi)的C′處,若∠AEC′=20°,則∠BDC′的度數(shù)是( )

A.30°
B.40°
C.50°
D.60°
【答案】分析:先根據(jù)已知條件,結(jié)合三角形內(nèi)角和定理,可求∠C=40°,又因為△CED折疊后得到△C′ED,所以可知∠C′ED=∠CED,∠C′DE=∠CDE,而∠AEC′=20°,那么利用平角的定義,可求∠C′ED,在△C′DE中,利用三角形內(nèi)角和等于180°,可求∠C′DE,進而可求∠C′DC,再結(jié)合平角定義,可求∠BDC′.
解答:解:∵∠A=65°,∠B=75°,
∴∠C=180°-65°-75°=40°,
∵∠AEC′=20°,
∴∠C′EC=180°-20°=160°,
又∵△CED關(guān)于DE折疊得到△C′ED,
∴△CED≌△C′ED,
∴∠C′ED=∠CED,∠C′DE=∠CDE,
∴∠C′ED=∠CED=×160°=80°,
∴在△C′DE中,∠C′DE=180°-80°-40°=60°,
∴∠C′DC=60°×2=120°,
∴∠BDC′=180°-120°=60°.
故選D.
點評:本題利用了平角的定義、折疊的性質(zhì)、三角形內(nèi)角和定理.平角等于180°.折疊后的兩個圖形全等.三角形的內(nèi)角和等于180°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=6.在AC上取一點E,以BE為折痕,使AB的一部分與BC重合,A與BC延長線上的點D重合,則CE的長度為( 。
A、3
B、6
C、
3
D、2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,∠A=65°,∠B=75°,將紙片的一角折疊(折痕為DE),使點C落在△ABC內(nèi)的C′處,若∠AEC′=20°,則∠BDC′的度數(shù)是( 。
A、30°B、40°C、50°D、60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,∠ACB=90°,BC=3,AB=6,在AC上取一點E,以BE為折痕,使AB的一部分與BC重合,A與BC延長線上的點D重合,則CE的長度為( 。
A、3
B、6
C、2
3
D、
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三角形紙片ABC中,AC=6,∠A=30°,∠C=90°,將∠A沿DE折疊,使點A與點B重合,則折痕DE的長為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•太原一模)如圖,在三角形紙片ABC中,BC=3,AB=5,∠BCA=90°,將其對折后點A落在BC的延長線上,折痕與AC交于點E,則CE的長是( 。

查看答案和解析>>

同步練習(xí)冊答案