【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80m的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設(shè)BC的長度為xm,矩形區(qū)域ABCD的面積為ym2.
(1)求AE的長(用x的代數(shù)式表示)
(2)當(dāng)y=108m2時,求x的值
【答案】(1)20-x(2)4m或36m
【解析】
試題(1)設(shè)AE=a,由矩形區(qū)域①②的面積和=矩形區(qū)域③的面積的2倍.提出BE=a,AB=a,然后根據(jù)周長為80米得出a與x的關(guān)系式;.(2)求出y與x之間的函數(shù)關(guān)系式,令y=108,解方程可得x的值.
試題解析:解:(1)設(shè)AE=a,由題意,得AE·AD=2BE·BC,AD=BC,∴BE=a,
AB=a,由題意,得2x+3a+2·a="80," ∴a=20-x ,AE=20-x
(2)y=AB·BC=a·X=(20-x)x,即y=--+30x(0<x<40)
-+30x=108 解得 x1=4,x2=36, 答:x為4m或36m
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式及點C的坐標(biāo);
(2)直線y=﹣x﹣2與該拋物線在第四象限內(nèi)交于點D,與x軸交于點F,連接AC,CD,線段AC與線段DF交于點G,求證:△AGF≌△CGD;
(3)直線y=m(m>0)與該拋物線的交點為M,N(點M在點N的左側(cè)),點M關(guān)于y軸的對稱點為點M′,點H的坐標(biāo)為(1,0),若四邊形NHOM′的面積為,求點H到OM′的距離d.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,若△ABC的面積為S△ABC=36cm2,則梯形EDBC的面積SEDBC為( )
A.9B.18C.27D.30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,點B′在線段AB上,AC,A′B′交于點O,則∠COA′的度數(shù)是( )
A.50°B.60°
C.45°D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(a,b,c是常數(shù),且)與x軸交于A、B兩點,頂點P(m,n),下列結(jié)論中,其中正確的有( 。
①;②若在拋物線上,則;③關(guān)于x的方程有實數(shù)解,則;④當(dāng)時,△ABP為等腰直角三角形
A.①②B.③④C.②④D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣4)(0≤x≤4)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此變換進(jìn)行下去,若點P(17,m)在這種連續(xù)變換的圖象上,則m的值為( )
A.2B.﹣2C.﹣3D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC邊的中點.將△ABC繞點A順時針旋轉(zhuǎn)a角(0°<a<180°),得到△AB′C′(如圖2),連接DB',EC'.
(1)探究DB'與EC'的數(shù)量關(guān)系,并結(jié)合圖2給予證明;
(2)填空:
①當(dāng)旋轉(zhuǎn)角α的度數(shù)為_____時,則DB'∥AE;
②在旋轉(zhuǎn)過程中,當(dāng)點B',D,E在一條直線上,且AD=時,此時EC′的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是BC邊的中點,BD=2,tanB=.
(1)求AD和AB的長;
(2)求sin∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,過點B的直線與對角線AC、邊AD分別交于點E和F.過點E作EG∥BC,交AB于G,則圖中相似三角形有( )
A. 7對 B. 6對 C. 5對 D. 4對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com