【題目】定義:在平面直角坐標系xOy中,把從點P出發(fā)沿縱或橫方向到達點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實際距離”為5,即PS+SQ=5或PT+TQ=5.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設A,B,C三個小區(qū)的坐標分別為A(3,1),B(5,﹣3),C(﹣1,﹣5),若點M表示單車停放點,且滿足M到A,B,C的“實際距離”相等,則點M的坐標為( )
A. (1,﹣2)B. (2,﹣1)C. (,﹣1)D. (3.0)
【答案】A
【解析】
若設M(x,y),構建方程組即可解決問題.
設M(x,y),由“實際距離”的定義可知:
點M只能在ECFG區(qū)域內,
﹣1<x<5,﹣5<y<1,
又∵M到A,B,C距離相等,
∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①
∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②
要將|x﹣3|與|y+3|中絕對值去掉,
需要判斷x在3的左側和右側,以及y在﹣3的上側還是下側,
將矩形ECFG分割為4部分,若要使M到A,B,C的距離相等,
由圖可知M只能在矩形AENK中,
故x<3,y>﹣3,
則方程可變?yōu)椋?/span>3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,
解得,x=1,y=﹣2,則M(1,﹣2)
故選:A.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線()與軸交于、兩點(點在點左側),與軸交于點,該拋物線的頂點的縱坐標是.
(1)求點、的坐標;
(2)設直線與直線關于該拋物線的對稱軸對稱,求直線的表達式;
(3)平行于軸的直線與拋物線交于點、,與直線交于點.若,結合函數圖象,求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=( 。
A. B. 1 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為了科學建設“學生健康成長工程”.隨機抽取了部分學生家庭對其家長進行了主題為“周末孩子在家您關心嗎?”的問卷調查,將回收的問卷進行分析整理,得到了如下的樣本統(tǒng)計表和扇形統(tǒng)計圖:
代號 | 情況分類 | 家庭數 |
帶孩子玩并且關心其作業(yè)完成情況 | 16 | |
只關心其作業(yè)完成情況 | b | |
只帶孩子玩 | 8 | |
既不帶孩子玩也不關心其作業(yè)完成情況 | d |
(1)求的值;
(2)該校學生家庭總數為500,學校決定按比例在類家庭中抽取家長組成培訓班,其比例為類取20%,類各取60%,請你估計該培訓班的家庭數;
(3)若在類家庭中只有一個城鎮(zhèn)家庭,其余是農村家庭,請用列舉法求出在類中隨機抽出2個家庭進行深度采訪,其中有一個是城鎮(zhèn)家庭的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某消防隊在一居民樓前進行演習,消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°和65°,點A距地面2.5米,點B距地面10.5米.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結果保留整數.參考數據:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,半徑OC垂直于弦AB,垂足為點D,點E在OC的延長線上,∠EAC=∠BAC
(1)求證:AE是⊙O的切線;
(2)若AB=8,cosE=,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,AB=4,點F,C是⊙O上兩點,連接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,過點C作CD⊥AF交AF的延長線于點D,垂足為點D.
(1)求扇形OBC的面積(結果保留π);
(2)求證:CD是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為迎接2011年高中招生考試,某中學對全校九年級學生進行了一次數學摸底考試,并隨機抽取了部分學生的測試成績作為樣本進行,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據圖中所給信息,下列問題:
(1)請將表示成績類別為“中”的條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,表示成績類別為“優(yōu)”的扇形所對應的圓心角是 72 度;
(3)學校九年級共有1000人參加了這次數學考試,估算該校九年級共有多少名學生的數學成績可以達到優(yōu)秀?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com