【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)(0,6),其對(duì)稱軸為直線x=.在x軸上方作平行于x軸的直線l與拋物線交于A、B兩點(diǎn)(點(diǎn)A在對(duì)稱軸的右側(cè)),過(guò)點(diǎn)A、B作x軸的垂線,垂足分別為D、C.設(shè)A點(diǎn)的橫坐標(biāo)為m.
(1)求此拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式.
(2)當(dāng)m為何值時(shí),矩形ABCD為正方形.
(3)當(dāng)m為何值時(shí),矩形ABCD的周長(zhǎng)最大,并求出這個(gè)最大值.
【答案】(1)y=-x2+3x+6;(2);(3)當(dāng)時(shí),矩形ABCD的周長(zhǎng)最大為.
【解析】
(1)首先根據(jù)對(duì)稱軸求得b值,然后代入點(diǎn)(0,6)求得c值即可;
(2)首先用含m的代數(shù)式表示出線段AB、AD的長(zhǎng),然后利用正方形ABCD的AB=CD得到有關(guān)m的等式求得m的值即可;
(3)表示出正方形的周長(zhǎng),然后利用配方法求最值即可;
(1)∵對(duì)稱軸為直線x=,
∴,
∴b=3.
把(0,6)代入y=-x2+3x+c得,
6=-0+3×0+c,
解得c=6.
∴此拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式為y=-x2+3x+6.
(2)根據(jù)題意,得
AD=-m2+3m+6.
∵矩形ABCD為正方形,AB=AD.
∴2m-3=-m2+3m+6,
解得.
∵點(diǎn)A在對(duì)稱軸的右側(cè),
∴.
∴(舍去).
∴.
(3)設(shè)矩形ABCD的周長(zhǎng)為C.
.
∴當(dāng)時(shí),矩形ABCD的周長(zhǎng)最大為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春天的某個(gè)周末,陽(yáng)光明媚,適合戶外運(yùn)動(dòng).下午,住在同一小區(qū)的小懿、小靜兩人不約而同的都準(zhǔn)備從小區(qū)出發(fā),沿相同的路線步行去同一個(gè)公園賞花!小懿出發(fā)5分鐘后小靜才出發(fā),同時(shí)小懿發(fā)現(xiàn)當(dāng)天的光線很適合攝影,所以決定按原速回家拿相機(jī),小懿拿了相機(jī)后,擔(dān)心錯(cuò)過(guò)最佳拍照時(shí)間,所以速度提高了20%,結(jié)果還是比小靜晚2分鐘到公園.小懿取相機(jī)的時(shí)間忽略不計(jì),在整個(gè)過(guò)程中,小靜保持勻速運(yùn)動(dòng),小懿提速前后也分別保持勻速運(yùn)動(dòng).如圖所示是小懿、小靜之間的距離y(米)與小懿離開(kāi)小區(qū)的時(shí)間x(分鐘)之間的函數(shù)圖象,則小區(qū)到公園的距離為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)和點(diǎn)在拋物線上.
(Ⅰ)求該拋物線的解析式和頂點(diǎn)坐標(biāo),并求出的值;
(Ⅱ)求點(diǎn)關(guān)于軸對(duì)稱點(diǎn)的坐標(biāo),并在軸上找一點(diǎn),使得最短,求此時(shí)點(diǎn)的坐標(biāo);
(Ⅲ)平移拋物線,記平移后點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)是軸上的定點(diǎn).
①當(dāng)拋物線向左平移到某個(gè)位置時(shí),最短,求此時(shí)拋物線的解析式;
②是軸上的定點(diǎn),當(dāng)拋物線向左平移到某個(gè)位置時(shí),四邊形的周長(zhǎng)最短,求此時(shí)拋物線的解析式(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是邊BC的中點(diǎn),E是AB邊上一點(diǎn),且AD⊥CE于O,AD=AC=CE.
(1)求證:∠B=45°;
(2)求的值;
(3)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用電,某市對(duì)居民用電實(shí)行“階梯收費(fèi)”(總電費(fèi)=第一階梯電費(fèi)+第二階梯電費(fèi)).規(guī)定:用電量不超過(guò)200度按第一階梯電價(jià)收費(fèi),超過(guò)200度的部分按第二階梯電價(jià)收費(fèi),如圖是張磊家2018年2月和3月所交電費(fèi)的收據(jù).
(1)該市規(guī)定的第一階梯電價(jià)和第二階梯電價(jià)單價(jià)分別為多少?
(2)張磊家4月份家庭支出計(jì)劃中電費(fèi)為160元,他家最大用電量為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,,點(diǎn)D、E分別在邊AB上,且AD = 2,∠DCE = 45°,那么DE =___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F,給出以下五個(gè)結(jié)論:①△PFA≌△PEB,②EF=AP,③△PEF是等腰直角三角形,④當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A,B重合),S四邊形AEPF=S△ABC,上述結(jié)論中始終正確有 ( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù) (x<0)的圖象交于點(diǎn)B(﹣2,n),過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)D(3﹣3n,1)是該反比例函數(shù)圖象上一點(diǎn).
(1)求m的值;
(2)若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】臺(tái)州人民翹首以盼的樂(lè)清灣大橋于2018年9月28日正式通車,經(jīng)統(tǒng)計(jì)分析,大橋上的車流速度(千米/小時(shí))是車流密度(輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到220輛/千米的時(shí)候就造成交通堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度不超過(guò)20輛/千米,車流速度為80千米/小時(shí),研究證明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(1)求大橋上車流密度為50/輛千米時(shí)的車流速度;
(2)在某一交通高峰時(shí)段,為使大橋上的車流速度大于60千米/小時(shí)且小于80千米/小時(shí),應(yīng)把大橋上的車流密度控制在什么范圍內(nèi)?
(3)車流量(輛/小時(shí))是單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),即:車流量車流速度車流密度,求大橋上車流量的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com