如圖,四邊形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD與EF的交點.
(1)求證:△BCF≌△DCE;
(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.

【答案】分析:(1)根據(jù)四邊形ABCD是正方形,可得∠BCF+∠FCD=90°,BC=CD.根據(jù)△ECF是等腰直角三角形,CF=CE,可知∠ECD+∠FCD=90度.所以∠BCF=∠ECD.所以△BCF≌△DCE.
(2)在Rt△BFC中,BF=,所以可知DE=BF=4,∠BFC=∠DEC=∠FCE=90度.得到DE∥FC.可證明△DGE∽△CGF.所以DG:GC=DE:CF=4:3.
解答:(1)證明:∵四邊形ABCD是正方形,
∴∠BCF+∠FCD=90°,BC=CD.
∵△ECF是等腰直角三角形,CF=CE,
∴∠ECD+∠FCD=90°.
∴∠BCF=∠ECD.
∴△BCF≌△DCE.(3分)

(2)解:在△BFC中,BC=5,CF=3,∠BFC=90°,
∴BF=
∵△BCF≌△DCE,
∴DE=BF=4,∠BFC=∠DEC=∠FCE=90°.(4分)
∴DE∥FC.
∴△DGE∽△CGF.(5分)
∴DG:GC=DE:CF=4:3.(6分)
點評:本題考查三角形全等的判定和正方形的性質,判定兩個三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL(在直角三角形中).判定兩個三角形全等,先根據(jù)已知條件或求證的結論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案