數(shù)學(xué)實驗室:小明取出一張矩形紙片ABCD,AD=BC=5,AB=CD=25.他先在矩形ABCD的邊AB上取一點M,接著在CD上取一點N,然后將紙片沿MN折疊,使MB′與DN交于點K,得到△MNK(如圖①).
(1)試判斷△MNK的形狀,并說明理由.

(2)如何折疊能夠使△MNK的面積最大?請你利用備用圖探究可能出現(xiàn)的情況,求出最大值.
△MNK是等腰三角形

∵ABCD是矩形,
∴AM∥DN,
∴∠KNM=∠1.
∵∠KMN=∠1,
∴∠KNM=∠KMN.
∴△MNK是等腰三角形.
(2)分兩種情況:
情況一:將矩形紙片對折,使點B與點D重合,此時點K也與點D重合.

設(shè)MK=MD=x,則AM=25-x,在Rt△DNM中,由勾股定理,得

解得,
即MD=ND=13. 
∴S△MNK=32.5.  
情況二:將矩形紙片沿對角線AC對折,此時折痕為AC.

設(shè)MK="AK=" CK=x,則DK=25-x,同理可得
即MK=NK=13.
∴S△MNK=32.5.
分情況一:將矩形紙片對折,使點B與D重合,此時點K也與D重合;情況二:將矩形紙片沿對角線AC對折,此時折痕即為AC兩種情況討論求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點A與邊CD上的點E重合,折痕FG分別與AB,CD交于點G,F(xiàn),AE與FG交于點O.
(1)如圖1,求證:A,G,E,F(xiàn)四點圍成的四邊形是菱形;
(2)如圖2,當(dāng)△AED的外接圓與BC相切于點N時,求證:點N是線段BC的中點;
(3)如圖2,在(2)的條件下,求折痕FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD的對角線互相平分,要使它變?yōu)榱庑,需要添加的條件是.(  )
A.AB﹦CDB.AD﹦BCC.AB﹦BCD.AC﹦BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若梯形的面積為8cm,高為2cm,則此梯形的中位線長為       cm 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將兩張長方形紙片如圖所示擺放,使其中一張長方形紙片的一個頂點恰好落在另一張長方形紙片的一條邊上,已知∠BEF=30°,則∠CMF=________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AB∥CD,AD =DC,求證:AC是∠DAB的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=,AB=6.在底邊AB上取點E,在射線DC上取點F,使得∠DEF=120°.
(1)當(dāng)點E是AB的中點時,線段DF的長度是     ;
(2)若射線EF經(jīng)過點C,則AE的長是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點E是平行四邊形ABCD的邊CD上的一點,連接AE交BC的延長線于點F,要使S四邊形ABCE =8S△CEF ,需要添加一個條件是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,給出了正方形ABCD的面積的四個表達式,其中錯誤的是(  。
A.(x+a)(x+a)      B.x2+a2+2ax
C.(x-a)(x-a)D.(x+a)a+(x+a)x

查看答案和解析>>

同步練習(xí)冊答案