【題目】如圖,在△ABC中,AB=AC,點(diǎn)D,E,F分別在AB,BC,AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=50°時(shí),求∠DEF的度數(shù);
(3)若∠A=∠DEF,判斷△DEF是否為等腰直角三角形.
【答案】(1)證明見解析;(2)65°;(3)△DEF不可能是等腰直角三角形.
【解析】
(1)根據(jù)AB=AC可得∠B=∠C,即可求證△BDE≌△CEF,即可解題;
(2)根據(jù)全等三角形的性質(zhì)得到∠CEF=∠BDE,于是得到∠DEF=∠B,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論;
(3)由(1)知:△DEF是等腰三角形,DE=EF,由(2)知,∠DEF=∠B,于是得到結(jié)論.
解:(1)∵AB=AC,
∴∠B=∠C,
在△BDE和△CEF中,
∵ ,
∴△BDE≌△CEF(SAS),
∴DE=EF,
∴△DEF是等腰三角形;
(2)∵∠DEC=∠B+∠BDE,
即∠DEF+∠CEF=∠B+∠BDE,
∵△BDE≌△CEF,
∴∠CEF=∠BDE,
∴∠DEF=∠B,
又∵在△ABC中,AB=AC,∠A=50°,
∴∠B=65°,
∴∠DEF=65°;
(3)由(1)知:△DEF是等腰三角形,即DE=EF,
由(2)知,∠DEF=∠B=∠C,
若∠A=∠DEF,
則有∠DEF=∠B=∠C=∠A=60°,
∴△DEF不可能是等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年5月25日,中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)在貴陽會(huì)展中心開幕,博覽會(huì)設(shè)了編號(hào)為1~6號(hào)展廳共6個(gè),小雨一家計(jì)劃利用兩天時(shí)間參觀其中兩個(gè)展廳:第一天從6個(gè)展廳中隨機(jī)選擇一個(gè),第二天從余下的5個(gè)展廳中再隨機(jī)選擇一個(gè),且每個(gè)展廳被選中的機(jī)會(huì)均等.
(1)第一天,1號(hào)展廳沒有被選中的概率是 ;
(2)利用列表或畫樹狀圖的方法求兩天中4號(hào)展廳被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校決定加強(qiáng)羽毛球、籃球、乒乓球、排球、足球五項(xiàng)球類運(yùn)動(dòng),每位同學(xué)必須且只能選擇一項(xiàng)球類運(yùn)動(dòng),對(duì)該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
運(yùn)動(dòng)項(xiàng)目 | 頻數(shù)(人數(shù)) |
羽毛球 | 30 |
籃球 | |
乒乓球 | 36 |
排球 | |
足球 | 12 |
請(qǐng)根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的 , ;
(2)在扇形統(tǒng)計(jì)圖中,“排球”所在的扇形的圓心角為 度;
(3)全校有多少名學(xué)生選擇參加乒乓球運(yùn)動(dòng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過點(diǎn)G作EF∥BC交AB于E,交AC于F,過點(diǎn)G作GD⊥AC于D,下列三個(gè)結(jié)論:① EF=BE+CF;②∠BGC=90°+∠A;③點(diǎn)G到△ABC各邊的距離相等;其中正確的結(jié)論有_________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn) E.
(1)求證:DE=CE.
(2)若∠CDE=25°,求∠A 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,若∠B=30°,則∠ACD的度數(shù)是 度;
拓展:如圖②,∠MCN=90°,射線CP在∠MCN的內(nèi)部,點(diǎn)A、B分別在CM、CN上,分別過點(diǎn)A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數(shù);
應(yīng)用:如圖③,點(diǎn)A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內(nèi)部,點(diǎn)D、E在射線CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,線段AB的垂直平分線DE分別交邊AB、AC于點(diǎn)E、D.
(1)若∠A=40°,求∠DBC的度數(shù);
(2)若△BCD的周長為8,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)(得分?jǐn)?shù)取正整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),繪制統(tǒng)計(jì)圖如下(未全完成),已知組的頻數(shù)比組小,解答下列問題:
(1)求樣本容量及頻數(shù)分布直方圖中的,的值;
(2)扇形統(tǒng)計(jì)圖中,部分所對(duì)的圓心角為,求的值并補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>分以上優(yōu)秀,全校共有名學(xué)生估計(jì)成績(jī)優(yōu)秀的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,把拋物線先向右平移1個(gè)單位,再向下平移4個(gè)單位,得到拋物線,所得拋物線與x軸交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左邊,與y軸交于點(diǎn)C,頂點(diǎn)為M;
寫出h、k的值以及點(diǎn)A、B的坐標(biāo);
判斷三角形BCM的形狀,并計(jì)算其面積;
點(diǎn)P是拋物線上一動(dòng)點(diǎn),在y軸上找點(diǎn)使點(diǎn)A,B,P,Q組成的四邊形是平行四邊形,直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo)不用寫過程
點(diǎn)P是拋物線上一動(dòng)點(diǎn),連接AP,以AP為一邊作正方形APFG,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變當(dāng)頂點(diǎn)F或G恰好落在y軸上時(shí),請(qǐng)直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo)不寫過程
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com