矩形折疊問題:如圖所示,把一張矩形紙片沿對角線折疊,重合部分是什么圖形,試說明理由.
(1)若AB=4,BC=8,求AF.
(2)若對折使C在AD上,AB=6,BC=10,求AE,DF的長.

【答案】分析:(1)如圖1,由折疊的性質(zhì)可證△ABF≌△C′DF,可得BF=DF,可判斷重合部分為等腰三角形;設(shè)AF=x,則BF=DF=8-x,在Rt△ABF中,利用勾股定理可求AF;
(2)如圖2,由折疊的性質(zhì)可知BE=BC=10,又AB=6,在Rt△ABE中,由勾股定理可求AE,設(shè)DF=x,由折疊的性質(zhì)得EF=FC=6-x,在Rt△DEF中,由勾股定理可求DF.
解答:解:(1)如圖1,由折疊的性質(zhì)可知AB=CD=C′D,
又∠A=∠C′=90°,∠AFB=∠C′FD,
∴△ABF≌△C′DF,
∴BF=DF,
∴重合部分△BDF為等腰三角形;
設(shè)AF=x,則BF=DF=8-x,在Rt△ABF中,
由勾股定理得AB2+AF2=BF2,即42+x2=(8-x)2,
解得AF=x=3;

(2)如圖2,由折疊的性質(zhì)可知BE=BC=10,又AB=6,
在Rt△ABE中,由勾股定理,得AE==8;
設(shè)DF=x,由折疊的性質(zhì)得EF=FC=6-x,DE=AD-AE=2,
在Rt△DEF中,由勾股定理得DE2+DF2=EF2,即22+x2=(6-x)2,
解得DF=x=
點(diǎn)評:本題考查了折疊的性質(zhì),三角形全等的判定與性質(zhì),勾股定理的運(yùn)用.關(guān)鍵是根據(jù)折疊的性質(zhì)將有關(guān)線段轉(zhuǎn)化,把問題集中到直角三角形中解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、紅絲帶是關(guān)注艾滋病防治問題的國際性標(biāo)志,人們將紅絲帶剪成小段,并用別針將折疊好的紅絲帶別在胸前,如圖所示.紅絲帶重疊部分形成的圖形是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)矩形折疊問題:如圖所示,把一張矩形紙片沿對角線折疊,重合部分是什么圖形,試說明理由.
(1)若AB=4,BC=8,求AF.
(2)若對折使C在AD上,AB=6,BC=10,求AE,DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小冬遇到一個(gè)有趣的問題:長方形臺球桌ABCD的邊長分別為AB=3,BC=5.點(diǎn)P在AD上,且AP=2.一球從點(diǎn)P處沿與AD夾角為的方向擊出,分別撞擊AB、BC、CD各一次后到達(dá)點(diǎn)P0.每次撞擊桌邊時(shí),撞擊前后的路線與桌邊所成的角相等(入射角等于反射角).如圖①所示.小冬的思考是這樣開始的:如圖②,將矩形ABCD沿直線AB折疊,得到矩形ABC1D1,由軸對稱的知識,發(fā)現(xiàn)QE=QR,PE=PQ+QR.

請你參考小冬的思路或想出自己的方法解決下列問題:
(1)當(dāng)點(diǎn)P0與點(diǎn)P重合時(shí),此球所經(jīng)過的路線總長度
2
34
2
34
;
(2)當(dāng)點(diǎn)P0與點(diǎn)A重合時(shí)(如圖③),求此球所經(jīng)過的路線總長度;
(3)當(dāng)點(diǎn)P0落在線段AP上時(shí),求tanθ的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

矩形折疊問題:如圖所示,把一張矩形紙片沿對角線折疊,重合部分是什么圖形,試說明理由.
(1)若AB=4,BC=8,求AF.
(2)若對折使C在AD上,AB=6,BC=10,求AE,DF的長.

查看答案和解析>>

同步練習(xí)冊答案