【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y),我們把點(diǎn)(-y+1,x+1)叫做點(diǎn)P伴隨點(diǎn).已知點(diǎn)A1的伴隨點(diǎn)為A2,點(diǎn)A2的伴隨點(diǎn)為A3,點(diǎn)A3的伴隨點(diǎn)為A4,,這樣依次得到點(diǎn)A1,A2,A3,An,….若點(diǎn)A1的坐標(biāo)為(2,4),點(diǎn)A2017的坐標(biāo)為 ( )

A. (-3,3) B. (-2,-2) C. (3-1) D. (2,4)

【答案】D

【解析】

根據(jù)伴隨點(diǎn)的定義依次求出各點(diǎn),不難發(fā)現(xiàn),每4個(gè)點(diǎn)為一個(gè)循環(huán)組依次循環(huán),用2017除以4,根據(jù)商和余數(shù)的情況確定點(diǎn)A2017的坐標(biāo)即可.

∵點(diǎn)A1的坐標(biāo)為(2,4),
A2-4+1,2+1)即(-33),A3-3+1,-3+1)即(-2,-2),A42+1,-2+1)即(3,-1),A52,4),
,
依此類推,每4個(gè)點(diǎn)為一個(gè)循環(huán)組依次循環(huán),
2017÷4=5041,
∴點(diǎn)A2017的坐標(biāo)與A1的坐標(biāo)相同,為(2,4);
故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,∠ADB=∠CBD,添加下列一個(gè)條件后,仍不能判定四邊形ABCD是平行四邊形的是( )

A∠ABD=∠CDB

B∠DAB=∠BCD

C∠ABC=∠CDA

D∠DAC=∠BCA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為190元、160元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

1720

第二周

4臺(tái)

10臺(tái)

2960

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)

1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

2)若超市準(zhǔn)備用不多于5100元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADBCBDABC的角平分線,DE、DF分別是ADBADC的角平分線,且BDFα,則以下AC的關(guān)系正確的是( 。

A.A2∠CB.A2∠C+2αC.ACD.AC+2α

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)OEFBCAB于點(diǎn)E,交AC于點(diǎn)F,過(guò)點(diǎn)OODAC于點(diǎn)D,下列四個(gè)結(jié)論:①BE=EF-CF;②∠BOC=90°+A;③點(diǎn)O到△ABC各邊的距離相等;④設(shè)OD=m,AE+AF=n,則SAEF=mn,其中正確的結(jié)論是______(填所有正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1的解析式為y=-x,直線l2l1交于點(diǎn)A(a-a),與y軸交于點(diǎn)B(0b),其中a,b滿足(a+3)2+=0

(1)求直線l2的解析式;

(2)在平面直角坐標(biāo)系中第二象限有一點(diǎn)P(m5),使得SAOP=SAOB,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)已知平行于y軸左側(cè)有一動(dòng)直線,分別與l1l2交于點(diǎn)M、N,且點(diǎn)M在點(diǎn)N的下方,點(diǎn)Qy軸上一動(dòng)點(diǎn),且△MNQ為等腰直角三角形,請(qǐng)求出滿足條件的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn).三個(gè)頂點(diǎn)都在網(wǎng)格上的三角形叫做格點(diǎn)三角形.小華已在左邊的正方形網(wǎng)格中作出了格點(diǎn)△ABC.請(qǐng)你在右邊的兩個(gè)正方形網(wǎng)格中各畫出一個(gè)不同的格點(diǎn)三角形,使得三個(gè)網(wǎng)格中的格點(diǎn)三角形都相似(不包括全等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類似地,我們定義:有一內(nèi)角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),A(4,0),B(-4,0),D是y軸上的一個(gè)動(dòng)點(diǎn),∠ADC=90°(A、D、C按順時(shí)針?lè)较蚺帕?, BC與經(jīng)過(guò)A,B,D三點(diǎn)的⊙M交于點(diǎn)E,DE平分∠ADC,連結(jié)AE,BD.顯然△DCE,△DEF,△DAE是半直角三角形.

(1)求證:△ABC是半直角三角形;
(2)求證:∠DEC=∠DEA;
(3)若點(diǎn)D的坐標(biāo)為(0,8),
①求AE的長(zhǎng);
②記BC與AD的交點(diǎn)為F,求ΔACF與ΔBCA的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在做作業(yè)時(shí),遇到這樣一道幾何題:

已知:如圖1,l1∥l2∥l3,點(diǎn)A、M、B分別在直線l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:CMD的度數(shù).

小明想了許久沒(méi)有思路,就去請(qǐng)教好朋友小堅(jiān),小堅(jiān)給了他如圖2所示的提示:

請(qǐng)問(wèn)小堅(jiān)的提示中   ,④   

理由是:   ;

理由是:   ;

CMD的度數(shù)是   °.

查看答案和解析>>

同步練習(xí)冊(cè)答案