【題目】已知△ABC中,CA=CB,0°<∠ACB≤90°,點M、N分別在邊CA,CB上(不與端點重合),BN=AM,射線AG∥BC交BM延長線于點D,點E在直線AN上,EA=ED.
(1)(觀察猜想)如圖1,點E在射線NA上,當∠ACB=45°時,①線段BM與AN的數量關系是 ; ②∠BDE的度數是 ;
(2)(探究證明)如圖2點E在射線AN上,當∠ACB=30°時,判斷并證明線段BM與AN的數量關系,求∠BDE的度數;
(3)(拓展延伸)如圖3,點E在直線AN上,當∠ACB=60°時,AB=3,點N是BC邊上的三等分點,直線ED與直線BC交于點F,請直接寫出線段CF的長.
【答案】(1)①BM=AN,②135°;(2)∠BDE=30°;(3)或4
【解析】
(1)如圖1中,延長ED交BC于點F,交AC于點O.想辦法證明∠BMC=∠BFE,再利用三角形的外角的性質即可解決問題;
(2)如圖2中,設AC交DF于點O.解決問題的方法類似(1);
(3)分兩種情形分別畫出圖形,利用相似三角形的性質解決問題即可.
(1)如圖1中,延長ED交BC于點F,交AC于點O,
∵CB=CA,
∴∠ABN=∠BAM,
∵BN=AM,AB=BA,
∴△ABN≌△BAM(SAS),
∴BM=AN,∠ANB=∠AMB,
∴∠ANC=∠BMC,
∵EA=ED,
∴∠EAD=∠EDA,
∵AG∥BC,
∴∠EAD=∠ENF,∠EDA=∠EFN,
∴∠BMC=∠BFE,
∴∠MOD+∠BDF=∠C+∠FOC,
∵∠C=45°,∠FOC=∠MOD,
∴∠MDO=45°,
∴∠BDE=135°,
故答案為BM=AN,135°.
(2)如圖2中,設AC交DF于點O.
∵CB=CA,
∴∠ABN=∠BAM,
∵BN=AM,AB=BA,
∴△ABN≌△BAM(SAS),
∴BM=AN,∠ANB=∠AMB,
∴∠ANC=∠BMC,
∵EA=ED,
∴∠EAD=∠EDA,
∵AG∥BC,
∴∠EAD=∠ENF,∠EDA=∠EFN,
∴∠BMC=∠BFE,
∴∠MOD+∠BDF=∠C+∠FOC,
∵∠C=30°,∠FOC=∠MOD,
∴∠MDO=30°,
∴∠BDE=30°.
(3)①如圖3﹣1中,
當BN=BC時,作MH⊥AB于H,
由題意AM=BN=1,
在Rt△AHM中,∵∠MAH=60°.AM=1,
∴AH=,BH=,HM=,
在Rt△BMH中,BM=AN=DF=,
由(2)可知:∠BDF=∠ACB=60°,
∵∠CBM=∠DBF,
∴△CBM∽△DBF,
∴,
∴,
∴BF=,
∴CF=﹣3=.
②如圖3﹣2中,
當CN=BC時,同法可得CF=4.
綜上所述,滿足條件的CF的長為或4.
科目:初中數學 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現需降價處理,且經市場調查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數關系式,并求出自變量x的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為推進“傳統(tǒng)文化進校園”活動,某校準備成立“經典誦讀”、“傳統(tǒng)禮儀”、“民族器樂”和“地方戲曲”等四個課外活動小組.學生報名情況如圖(每人只能選擇一個小組):
(1)報名參加課外活動小組的學生共有 人,將條形圖補充完整;
(2)扇形圖中m= ,n= ;
(3)根據報名情況,學校決定從報名“經典誦讀”小組的甲、乙、丙、丁四人中隨機安排兩人到“地方戲曲”小組,甲、乙恰好都被安排到“地方戲曲”小組的概率是多少?請用列表或畫樹狀圖的方法說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場按定價銷售某種商品時,每件可獲利100元;按定價的八折銷售該商品5件與將定價降低50元銷售該商品6件所獲利潤相等.
(1)該商品進價、定價分別是多少?
(2)該商場用10000元的總金額購進該商品,并在五一節(jié)期間以定價的七折優(yōu)惠全部售出,在每售出一件該商品時,均捐獻元給社會福利事業(yè),該商場為能獲得不低于3000元的利潤,求的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知ABCD中,AB=3,BC=5,∠BAC=90°,E、F分別是AB,BC上的動點,EF⊥BC,△BEF與△PEF關于直線EF對稱,若△APD是直角三角形,則BF的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由我國完全自主設計、自主建造的首艘國產航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.
(參考數據:,,,,,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年3月30日,四川省涼山州木里縣境內發(fā)生森林火災,30名左右的撲火英雄犧牲,讓人感到痛心,也再次給我們的防火安全意識敲響警鐘.為了加強學生的防火安全意識,某校舉行了一次“防火安全知識競賽”(滿分100分),賽后從中抽取了部分學生的成績進行整理,并制作了如下不完整的統(tǒng)計圖表:
組別 | 成績x/分 | 組中值 |
A | 50≤x<60 | 55 |
B | 60≤x<70 | 65 |
C | 70≤x<80 | 75 |
D | 80≤x<90 | 85 |
E | 90≤x<100 | 95 |
請根據圖表提供的信息,解答下列各題:
(1)補全頻數分布直方圖和扇形統(tǒng)計圖;
(2)分數段80≤x<90對應扇形的圓心角的度數是 °,所抽取的學生競賽成績的中位數落在 區(qū)間內;
(3)若將每組的組中值(各組兩個端點的數的平均數)代表各組每位學生的競賽成績,請你估計該校參賽學生的平均成績.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C在⊙O外,∠ABC的平分線與⊙O交于點D,∠C=90°.
(1)CD與⊙O有怎樣的位置關系?請說明理由;
(2)若∠CDB=60°,AB=6,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD邊長為4,點O在對角線DB上運動(不與點B,D重合),連接OA,作OP⊥OA,交直線BC于點P.
(1)判斷線段OA,OP的數量關系,并說明理由.
(2)當OD=時,求CP的長.
(3)設線段DO,OP,PC,CD圍成的圖形面積為S1,△AOD的面積為S2,求S1﹣S2的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com