【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當(dāng)△DCE旋轉(zhuǎn)至點(diǎn)A,D,E在同一直線上,連接BE.
填空:① ∠AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關(guān)系是______.
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,若AE=15,DE=7,求AB的長(zhǎng)度.
(3)探究發(fā)現(xiàn):
圖1中的△ACB和△DCE,在△DCE旋轉(zhuǎn)過(guò)程中當(dāng)點(diǎn)A,D,E不在同一直線上時(shí),設(shè)直線AD與BE相交于點(diǎn)O,試在備用圖中探索∠AOE的度數(shù),直接寫(xiě)出結(jié)果,不必說(shuō)明理由.
【答案】(1)60°.AD=BE;(2)AB=17;(3)∠AOE的度數(shù)是60°或120°.
【解析】試題分析:(1)由條件易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點(diǎn)A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).
(2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由△DCE為等腰直角三角形及CM為△DCE中DE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE.
(3)由(1)知△ACD≌△BCE,得∠CAD=∠CBE,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根據(jù)三角形的內(nèi)角和定理可知∠AOE=60°.
試題解析:(1)①∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC∠CED=60°.
故答案為:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案為:AD=BE.
(2)∵△ACB和△DCE均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴AD=BE=AE-DE=8,∠ADC=∠BEC,
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°.
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC∠CED=90°.
∴AB==17;
(3)由(1)知△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠CAB=∠CBA=60°,
∴∠OAB+∠OBA=120°
∴∠AOE=180°120°=60°,
同理求得∠AOB=60°,
∴∠AOE=120°,
∴∠AOE的度數(shù)是60°或120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)y=(x>0)的圖象交于點(diǎn)A(m,2),B(2,n).過(guò)點(diǎn)A作AC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在四邊形ABCD中,點(diǎn)E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求證:AC=CD;
(2)若AC=AE,求∠DEC的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)112.5°.
【解析】試題分析: 根據(jù)同角的余角相等可得到結(jié)合條件,再加上 可證得結(jié)論;
根據(jù) 得到 根據(jù)等腰三角形的性質(zhì)得到 由平角的定義得到
試題解析: 證明:
在△ABC和△DEC中, ,
(2)∵∠ACD=90°,AC=CD,
∴∠1=∠D=45°,
∵AE=AC,
∴∠3=∠5=67.5°,
∴∠DEC=180°-∠5=112.5°.
【題型】解答題
【結(jié)束】
21
【題目】一個(gè)零件的形狀如圖所示,工人師傅按規(guī)定做得∠B=90°,
AB=3,BC=4,CD=12,AD=13,假如這是一塊鋼板,你能幫工人師傅計(jì)算一下這塊鋼板的面積嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)G在對(duì)角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.
(1)寫(xiě)出線段AG,GE,GF長(zhǎng)度之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若正方形ABCD的邊長(zhǎng)為1,∠AGF=105°,求線段BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富居民業(yè)余生活,某居民區(qū)組建籌委會(huì),該籌委會(huì)動(dòng)員居民自愿集資建立一個(gè)書(shū)刊閱覽室.經(jīng)預(yù)算,一共需要籌資30 000元,其中一部分用于購(gòu)買(mǎi)書(shū)桌、書(shū)架等設(shè)施,另一部分用于購(gòu)買(mǎi)書(shū)刊.
(1)籌委會(huì)計(jì)劃,購(gòu)買(mǎi)書(shū)刊的資金不少于購(gòu)買(mǎi)書(shū)桌、書(shū)架等設(shè)施資金的3倍,問(wèn)最多用多少資金購(gòu)買(mǎi)書(shū)桌、書(shū)架等設(shè)施?
(2)經(jīng)初步統(tǒng)計(jì),有200戶居民自愿參與集資,那么平均每戶需集資150元.鎮(zhèn)政府了解情況后,贈(zèng)送了一批閱覽室設(shè)施和書(shū)籍,這樣,只需參與戶共集資20 000元.經(jīng)籌委會(huì)進(jìn)一步宣傳,自愿參與的戶數(shù)在200戶的基礎(chǔ)上增加了a%(其中a>0).則每戶平均集資的資金在150元的基礎(chǔ)上減少了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行社組織一批游客外出旅游,原計(jì)劃租用45座客車(chē)若干輛,但有15人沒(méi)有座位;若租用同樣數(shù)量的60座客車(chē),則多出一輛車(chē),且其余客車(chē)恰好坐滿.已知45座客車(chē)租金為每輛220元,60座客車(chē)租金為每輛300元,問(wèn):
(1)這批游客的人數(shù)是多少?原計(jì)劃租用多少輛45座客車(chē)?
(2)若租用同一種車(chē),要使每位游客都有座位,應(yīng)該怎樣租用才合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)底面直徑為10cm,高為18cm的圓柱形瓶?jī)?nèi)裝滿水,將瓶?jī)?nèi)的水倒入一個(gè)底面直徑是12cm,高10cm的圓柱形玻璃杯內(nèi),能否完全裝下?若裝不下,則瓶?jī)?nèi)水面還有多高?若沒(méi)裝滿,求杯內(nèi)水面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=9,AC=6,BC=12,點(diǎn)M在AB邊上,且AM=3,過(guò)點(diǎn)M作直線MN與AC邊交于點(diǎn)N,使截得的三角形與原三角形相似,則MN=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價(jià)和千克數(shù)如表所示,商家用加權(quán)平均數(shù)來(lái)確定什錦糖的單價(jià).
甲種糖果 | 乙種糖果 | 丙種糖果 | |
單價(jià)(元/千克) | 20 | 25 | 30 |
千克數(shù) | 40 | 40 | 20 |
(1)求該什錦糖的單價(jià).
(2)為了使什錦糖的單價(jià)每千克至少降低2元,商家計(jì)劃在什錦糖中加入甲、丙兩種糖果共100千克,問(wèn)其中最多可加入丙種糖果多少千克?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com