【題目】二次函數(shù)的圖像交y軸于C點(diǎn),交軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)A、點(diǎn)B的橫坐標(biāo)是一元二次方程的兩個(gè)根.
(1)求出點(diǎn)A、點(diǎn)B的坐標(biāo)及該二次函數(shù)表達(dá)式.
(2)如圖2,連接AC、BC,點(diǎn)Q是線段OB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)O、B重合),過(guò)點(diǎn)Q作QD∥AC交于BC點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.
(3)如圖3,線段MN是直線y=x上的動(dòng)線段(點(diǎn)M在點(diǎn)N左側(cè)),且MN=,若M點(diǎn)的橫坐標(biāo)為n,過(guò)點(diǎn)M作x軸的垂線與x軸交于點(diǎn)P,過(guò)點(diǎn)N作x軸的垂線與拋物線交于點(diǎn)Q.以點(diǎn)P,M,Q,N為頂點(diǎn)的四邊形能否為平行四邊形?若能,請(qǐng)求出n的值;若不能,請(qǐng)說(shuō)明理由.
【答案】(1)A(-2,0),B(6,0),;(2);(3)n=1±或-1±.
【解析】試題分析:(1)解一元二次方程x2-4x-12=0可求A、B兩點(diǎn)坐標(biāo);將A、B兩點(diǎn)坐標(biāo)代入二次函數(shù)y=ax2+bx+6,可求二次函數(shù)解析式;
(2)由DQ∥AC得△BDQ∽△BCA,利用相似比表示△BDQ的面積,利用三角形面積公式表示△ACQ的面積,根據(jù)S△CDQ=S△ABC-S△BDQ-S△ACQ,運(yùn)用二次函數(shù)的性質(zhì)求面積最大時(shí),m的值;
(3)以點(diǎn)P,M,Q,N為頂點(diǎn)的四邊形能為平行四邊形,因?yàn)?/span>M,N的位置不確定,所以要分三種情況討論,求出滿足題意的n值即可.
試題解析:(1)∵一元二次方程x2-4x-12=0的兩個(gè)根,分別是x=2或6,點(diǎn)A、點(diǎn)B的橫坐標(biāo)是方程的兩個(gè)根,點(diǎn)A在點(diǎn)B的左側(cè),
∴A(-2,0)、B(6,0),將A、B兩點(diǎn)坐標(biāo)代入二次函數(shù)y=ax2+bx+6,得
,
解得,
故y=-x2+2x+6;
(2)依題意,得AB=8,QB=6-m,AQ=m+2,OC=6,則S△ABC=AB×OC=24,
∵由DQ∥AC,
∴△BDQ∽△BCA,
∴ ,
即S△BDQ=(m-6)2,
又∵S△ACQ=AQ×OC=3m+6,
∴S=S△ABC-S△BDQ-S△ACQ=24-(m-6)2-(3m+6)=-m2+m+=-(m-2)2+6,
∴當(dāng)m=2時(shí),S最大;
(3)∵MN=,點(diǎn)A,B都在直線y=x上,MN在直線AB上,MN在線段 AB上,M的橫坐標(biāo)為n,縱坐標(biāo)也為n,
如圖3,過(guò)點(diǎn)M作x軸的平行線,過(guò)點(diǎn)N作y軸的平行線,它們相交于點(diǎn)H.
∴△MHN是等腰直角三角形.
∴MH=NH=1.
∴點(diǎn)N的坐標(biāo)為(n+1,n+1),
①如圖4,當(dāng)n>0時(shí),PM=n,
NQ=n+1-[-(n+1)2+2(n+1)+6],
當(dāng)四邊形PMQN為平行四邊形時(shí),PM=NQ.
則n=n+1-[-(n+1)2+2(n+1)+6],
解得n=-1+或-1;
②如圖5,當(dāng)n<0時(shí),PM=-m,
NQ=n+1-[-(n+1)2+2(n+1)+6],
當(dāng)四邊形PMQN為平行四邊形時(shí),PM=NQ.
則-n=n+1-[-(n+1)2+2(n+1)+6],
解得n=1-或n=-1-,
③∵直線AB過(guò)O,即直線經(jīng)過(guò)第一、三象限,
∴點(diǎn)M在第3象限點(diǎn)N在第2象限不存在;
綜上所述以點(diǎn)P,M,Q,N為頂點(diǎn)的四邊形能為平行四邊形,n的值是n=1±,或n=-1±.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝店購(gòu)進(jìn)一批甲、乙兩種款型時(shí)尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進(jìn)價(jià)比乙種款型每件的進(jìn)價(jià)少30元.
(1)甲、乙兩種款型的T恤衫各購(gòu)進(jìn)多少件?
(2)商店進(jìn)價(jià)提高60%標(biāo)價(jià)銷售,銷售一段時(shí)間后,甲款型全部售完,乙款型剩余一半,商店決定對(duì)乙款型按標(biāo)價(jià)的五折降價(jià)銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部△CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.
(1)當(dāng)MN和AB之間的距離為0.5米時(shí),求此時(shí)△EMN的面積;
(2)設(shè)MN與AB之間的距離為x 米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(3)請(qǐng)你探究△EMN的面積S(平方米)有無(wú)最大值,若有,請(qǐng)求出這個(gè)最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)工會(huì)開(kāi)展“一周工作量完成情況”調(diào)查活動(dòng),隨機(jī)調(diào)查了部分員工一周的工作量剩余情況,并將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成如圖 1 和圖 2 所示的不完整統(tǒng)計(jì)圖 .
(1) 被調(diào)查員工的人數(shù)為 人:
(2) 把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3) 若該企業(yè)有員工 10000 人,請(qǐng)估計(jì)該企業(yè)某周的工作量完成情況為“剩少量”的員工有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某工藝廠為迎“五一”,設(shè)計(jì)了一款成本為20元/件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過(guò)45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知四邊形是邊長(zhǎng)為的正方形,是正方形邊上的兩個(gè)動(dòng)點(diǎn),點(diǎn)從點(diǎn)出發(fā),以的速度沿方向運(yùn)動(dòng),點(diǎn)同時(shí)從點(diǎn)出發(fā)以速度沿方向運(yùn)動(dòng).設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.
①如圖1,點(diǎn)在邊上,相交于點(diǎn),當(dāng)互相平分時(shí),求的值;
②如圖2,點(diǎn)在邊上,相交于點(diǎn),當(dāng)時(shí),求的值.
(2)如圖,在小正方形的邊長(zhǎng)為1的正方形網(wǎng)格中,點(diǎn)在格點(diǎn)上.
①線段的長(zhǎng)是_____________;
②在網(wǎng)格中用無(wú)刻度的直尺,以為邊畫矩形,使這個(gè)矩形的面積是.
要求:保留畫圖痕跡,并說(shuō)明點(diǎn)的位置如何找到的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),試分別根據(jù)下列條件,求點(diǎn)的坐標(biāo).
(1)點(diǎn)在軸上;
(2)點(diǎn)在過(guò)點(diǎn)且與軸平行的直線上;
(3)點(diǎn)到兩坐標(biāo)軸的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點(diǎn)P,分別交AC和BC的延長(zhǎng)線于E,D.過(guò)P作PF⊥AD交AC的延長(zhǎng)線于點(diǎn)H,交BC的延長(zhǎng)線于點(diǎn)F,連接AF交DH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某電信公司計(jì)劃在A,B兩鄉(xiāng)鎮(zhèn)間的E處修建一座5G信號(hào)塔,且使C,D兩個(gè)村莊到E的距離相等.已知AD⊥AB于點(diǎn)A,BC⊥AB于點(diǎn)B,AB=80km,AD=50km,BC=30km,求5G信號(hào)塔E應(yīng)該建在離A鄉(xiāng)鎮(zhèn)多少千米的地方?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com