如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F(xiàn)是OE上的一點(diǎn),使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說(shuō)明理由;
(3)若BC=8,AD=10,求CD的長(zhǎng).
(1)證明:∵AD是直徑,
∴∠ABD=∠ACD=90°,
在Rt△ABD和Rt△ACD中,
,
∴Rt△ABD≌Rt△ACD,
∴∠BAD=∠CAD,
∵AB=AC,
∴BE=CE;
(2)四邊形BFCD是菱形.
證明:∵AD是直徑,AB=AC,
∴AD⊥BC,BE=CE,
∵CF∥BD,
∴∠FCE=∠DBE,
在△BED和△CEF中
,
∴△BED≌△CEF,
∴CF=BD,
∴四邊形BFCD是平行四邊形,
∵∠BAD=∠CAD,
∴BD=CD,
∴四邊形BFCD是菱形;
(3)解:∵AD是直徑,AD⊥BC,BE=CE,
∴CE2=DE•AE,
設(shè)DE=x,
∵BC=8,AD=10,
∴42=x(10﹣x),
解得:x=2或x=8(舍去)
在Rt△CED中,
CD===2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D為邊CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過(guò)D作DO⊥AB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對(duì)稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長(zhǎng);
(3)當(dāng)△AB′D為等腰三角形時(shí),求線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)兩點(diǎn)A(0,1),B(2,0),則當(dāng)x 時(shí),y≤0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在4×4的正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),左上角陰影部分是一個(gè)以格點(diǎn)為頂點(diǎn)的正方形(簡(jiǎn)稱格點(diǎn)正方形).若再作一個(gè)格點(diǎn)正方形,并涂上陰影,使這兩個(gè)格點(diǎn)正方形無(wú)重疊面積,且組成的圖形是軸對(duì)稱圖形,又是中心對(duì)稱圖形,則這個(gè)格點(diǎn)正方形的作法共有( 。
| A. | 2種 | B. | 3種 | C. | 4種 | D. | 5種 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知△ABC的三邊長(zhǎng)為、、,且,若平行于三角形一邊的直線
將△ABC的周長(zhǎng)分成相等的兩部分,設(shè)圖中的小三角形①、②、③的面積分別為、、
則、、的大小關(guān)系是 (用“<”號(hào)連接)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com