【題目】如圖,∠ACB=60°,半徑為1cm的⊙O切BC于點(diǎn)C,若將⊙O在CB上向右滾動(dòng),則當(dāng)滾動(dòng)到⊙O與CA也相切時(shí),圓心O移動(dòng)的水平距離是cm.
【答案】
【解析】解:如圖,當(dāng)圓O滾動(dòng)到圓W位置與CA,CB相切,切點(diǎn)分別為E,F(xiàn); 連接WE,WF,CW,OC,OW,則OW=CF,WF=1,∠WCF= ∠ACB=30°,
所以點(diǎn)O移動(dòng)的距離為OW=CF=WFcot∠WCF=WFcot30°= .
根據(jù)題意畫圖,當(dāng)圓O滾動(dòng)到圓W位置與CA,CB相切,切點(diǎn)分別為E,F(xiàn),連接WE,WF,CW,OC,OW,則四邊形OWC是矩形;構(gòu)造直角三角形利用直角三角形中的30°角的三角函數(shù)值,可求得點(diǎn)O移動(dòng)的距離為OW=CF=WFcot∠WCF=WFcot30°= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E是矩形ABCD的邊CD上一點(diǎn),BF⊥AE于F,試說(shuō)明:△ABF∽△EAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市教育局對(duì)某鎮(zhèn)實(shí)施“教育精準(zhǔn)扶貧”,為某鎮(zhèn)建中、小型兩種圖書室共30個(gè).計(jì)劃養(yǎng)殖類圖書不超過(guò)2000本,種植類圖書不超過(guò)1600本.已知組建一個(gè)中型圖書室需養(yǎng)殖類圖書80本,種植類圖書50本;組建一個(gè)小型圖書室需養(yǎng)殖類圖書30本,種植類圖書60本.
(1)符合題意的組建方案有幾種?請(qǐng)寫出具體的組建方案;
(2)若組建一個(gè)中型圖書室的費(fèi)用是2000元,組建一個(gè)小型圖書室的費(fèi)用是1500元,哪種方案費(fèi)用最低,最低費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)畫出將△ABC向右平移2個(gè)單位后得到的△A1B1C1 , 再畫出將△A1B1C1繞點(diǎn)B1按逆時(shí)針?lè)较蛐D(zhuǎn)90°后所得到的△A2B1C2;
(2)求線段B1C1旋轉(zhuǎn)到B1C2的過(guò)程中,點(diǎn)C1所經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀.拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10cm.橋洞與水面的最大距離是5m.橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).求:
(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)體戶購(gòu)進(jìn)一批時(shí)令水果,20天銷售完畢,他將本次銷售情況進(jìn)行了跟蹤記錄,根據(jù)所記錄的數(shù)據(jù)繪制如下的函數(shù)圖象,其中日銷售量y(千克)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系如圖(1)所示,銷售單價(jià)p(元/千克)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系如圖(2)所示。(銷售額=銷售單價(jià)×銷售量)
(1)直接寫出y與x之間的函數(shù)解析式;
(2)分別求第10天和第15天的銷售額;
(3)若日銷售量不低于24千克的時(shí)間段為“最佳銷售期”,則此次銷售過(guò)程中,“最佳銷售期”共有多少天?在此期間銷售單價(jià)最高為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;
(2)求∠FAE的度數(shù);
(3)求證:CD=2BF+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在矩形ABCD中,AB=a,BC=b,點(diǎn)E是線段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連接BE、CE.
若a=5,sin∠ACB= ,解答下列問(wèn)題:
(1)填空:b=;
(2)當(dāng)BE⊥AC時(shí),求出此時(shí)AE的長(zhǎng);
(3)設(shè)AE=x,試探索點(diǎn)E在線段AD上運(yùn)動(dòng)過(guò)程中,使得△ABE與△BCE相似時(shí),請(qǐng)寫x、a、b三者的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點(diǎn),若AE是∠BAD的平分線,試探究AB,AD,DC之間的等量關(guān)系,證明你的結(jié)論;
(2)如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長(zhǎng)線交于點(diǎn)F,E是BC的中點(diǎn),若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com