【題目】在圓中,弦與弦相交于點(diǎn),于點(diǎn),過(guò)點(diǎn)作圓的切線的延長(zhǎng)線于點(diǎn).

1)如圖①,若,求的大小;

2)如圖②,連接,若,求的度數(shù).

【答案】(1) ;(2)

【解析】

1)如圖①,連接OB,先利用切線的性質(zhì)得∠OBF=90°,而OACD,所以∠OED=90°,利用四邊形內(nèi)角和可計(jì)算出∠AOB=130°,然后根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和計(jì)算出∠OBA=A=25°,從而得到∠GBF=65°;

2)如圖②,連接OBBO的延長(zhǎng)線交ACH,利用切線的性質(zhì)得OBBF,再利用ACBF得到BHAC,與(1)方法可得到∠AOB=144°,從而得到∠OBA=OAB=18°,接著計(jì)算出∠GBF

1)如圖①,連接

的切線

又∵

又∵

(2)由(1)知,,,∴,∴

(本題條件多余,未用到,加上這個(gè)條件,可以得出

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,3),∠ABO30°,將△ABC沿AB所在直線對(duì)折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為(  )

A. (,)B. (2,)C. (,)D. (3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一期間,小華和媽媽到某景區(qū)游玩,小明想利用所學(xué)的數(shù)學(xué)知識(shí),估測(cè)景區(qū)里的觀景塔的高度,他從點(diǎn)處的觀景塔出來(lái)走到點(diǎn).沿著斜坡點(diǎn)走了米到達(dá)點(diǎn),此時(shí)回望觀景塔,更顯氣勢(shì)宏偉.點(diǎn)觀察到觀景塔頂端的仰角為,再往前走到處,觀察到觀景塔頂端的仰角,測(cè)得之間的水平距離米,則觀景塔的高度約為( ) . ()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是拋物線y=x2﹣4x+3上的一點(diǎn),以點(diǎn)P為圓心、1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線y=0相切時(shí),點(diǎn)P的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明做用頻率估計(jì)概率的試驗(yàn)時(shí),根據(jù)統(tǒng)計(jì)結(jié)果,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的試驗(yàn)最有可能的是( 。

A. 任意買(mǎi)一張電影票,座位號(hào)是2的倍數(shù)的概率

B. 一副去掉大小王的撲克牌,洗勻后,從中任抽一張牌的花色是紅桃

C. 拋一個(gè)質(zhì)地均勻的正方體骰子,落下后朝上的面點(diǎn)數(shù)是3

D. 一個(gè)不透明的袋子中有4個(gè)白球、1個(gè)黑球,它們除了顏色外都相同,從中抽到黑球

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,,,,點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿折線方向運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿線段方向向點(diǎn)運(yùn)動(dòng)、已知?jiǎng)狱c(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,在這個(gè)運(yùn)動(dòng)過(guò)程中,若的面積為,則滿(mǎn)足條件的的值有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90,EAB的中點(diǎn),求證:

(1)AC2=AB·AD;

(2)CE∥AD。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)Py軸的正半軸上,⊙Px軸于B、C兩點(diǎn),以AC為直角邊作等腰RtACD,BD分別交y軸和⊙PE、F兩點(diǎn),連接AC、FC

(1)求證:∠ACF=ADB;

(2)若點(diǎn)ABD的距離為m,BF+CF=n,求線段CD的長(zhǎng);

(3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時(shí),的值是否發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,把矩形OCBA繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α,得到矩形FCDE,設(shè)FCAB交于點(diǎn)H,A(0,4),C(6,0).

(1)當(dāng)α=45°時(shí),求H點(diǎn)的坐標(biāo).

(2)當(dāng)α=60°時(shí),ΔCBD是什么特殊的三角形?說(shuō)明理由.

(3)當(dāng)AH=HC時(shí),求直線HC的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案