【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與直線交于點(diǎn)M是函數(shù)圖象上一點(diǎn),過Mx軸的平行線交直線于點(diǎn)N

1)求kp的值;

2)設(shè)點(diǎn)M的橫坐標(biāo)為m

①求點(diǎn)N的坐標(biāo);(用含m的代數(shù)式表示)

②若的面積大于,結(jié)合圖象直接寫出m的取值范圍.

【答案】1,;(2)①;②或者

【解析】

1)將點(diǎn)代入反比例函數(shù)的解析式可求出的值,從而可得點(diǎn)P坐標(biāo),再將其代入直線即可得出k的值;

2)①先根據(jù)反比例函數(shù)的解析式求出點(diǎn)M的縱坐標(biāo),從而可得點(diǎn)N的縱坐標(biāo),再將其代入直線的解析式可得點(diǎn)N的橫坐標(biāo),從而可得出答案;

②分兩種情況,分別求出MN的長和MN邊上的高,再根據(jù)三角形的面積公式列出不等式,求解即可得.

1)依題意,點(diǎn)在函數(shù)的圖象上

可得,則點(diǎn)

代入直線,得

綜上,,;

2)①由于M是函數(shù)圖象上一點(diǎn),且點(diǎn)M的橫坐標(biāo)為m

可得點(diǎn)M的縱坐標(biāo)為

則點(diǎn)

又因?yàn)檫^Mx軸的平行線交直線于點(diǎn)N

則點(diǎn)N的縱坐標(biāo)為

當(dāng)時(shí),,解得

則點(diǎn)N的坐標(biāo)為

②由題意得:(因?yàn)楫?dāng)時(shí),點(diǎn)M、N重合,不能構(gòu)成

因此,分以下兩種情況:

)當(dāng)時(shí),,邊MN上的高為

解得

結(jié)合得:

)當(dāng)時(shí),,邊MN上的高為

解得(符合題設(shè))或(不符題設(shè),舍去)

綜上,m的取值范圍為或者

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線y1與直線y2的圖象交于A、B兩點(diǎn).已知點(diǎn)A的坐標(biāo)為(4,1),點(diǎn)Pab)是雙曲線y1上的任意一點(diǎn),且0a4

1)分別求出y1y2的函數(shù)表達(dá)式;

2)連接PA、PB,得到△PAB,若4ab,求三角形ABP的面積;

3)當(dāng)點(diǎn)P在雙曲線y1上運(yùn)動(dòng)時(shí),設(shè)PBx軸于點(diǎn)E,延長PAx軸于點(diǎn)F,判斷PEPF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,BCx軸,垂足為D,邊AB所在直線分別交x軸、y軸于點(diǎn)EF,且AFEF,反比例函數(shù)y的圖象經(jīng)過A、C兩點(diǎn),已知點(diǎn)A2,n).

1)求AB所在直線對應(yīng)的函數(shù)表達(dá)式;(2)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是某企業(yè)甲、乙兩位員工的能力測試結(jié)果的網(wǎng)狀圖,以O為圓心的五個(gè)同心圓分別代表能力水平的五個(gè)等級由低到高分別賦分15分,由原點(diǎn)出發(fā)的五條線段分別指向能力水平的五個(gè)維度,網(wǎng)狀圖能夠更加直觀的描述測試者的優(yōu)勢和不足,觀察圖形,有以下幾個(gè)推斷:

①甲和乙的動(dòng)手操作能力都很強(qiáng);

②缺少探索學(xué)習(xí)的能力是甲自身的不足;

③與甲相比乙需要加強(qiáng)與他人的溝通合作能力;

④乙的綜合評分比甲要高.

其中合理的是(

A.①③B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,M是弦與弧所圍成的圖形的內(nèi)部的一個(gè)定點(diǎn),P是弦上一動(dòng)點(diǎn),連接并延長交弧于點(diǎn)Q,連接

已知,設(shè)A,P兩點(diǎn)間的距離為,PQ兩點(diǎn)間距離為,兩點(diǎn)間距離為

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)隨自變量x的變化而變化的規(guī)律進(jìn)行了研究.下面是小明的探究過程,請補(bǔ)充完整.

1)按照如表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了x的幾組對應(yīng)值,補(bǔ)全下表:

0

1

2

3

4

5

6

5.24

4.24

3.24

1.54

1.79

3.47

1.31

1.34

1.42

1.54

1.80

2.45

3.47

2)在同一平面直角坐標(biāo)系中,描出表中各組數(shù)值對應(yīng)的點(diǎn)并畫出函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)為等腰三角形時(shí),的長度約_________.(精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,BC,D在⊙O上,弦AD的延長線與弦BC的延長線相交于點(diǎn)E.用①AB是⊙O的直徑,②CBCE,③ABAE中的兩個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論組成一個(gè)命題,則組成真命題的個(gè)數(shù)為( 。

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來到C處,測得條幅的底部B的仰角為48°,此時(shí)小穎距大樓底端N20米.已知坡面DE=20米,山坡的坡度i=,且DM、EC、N、B、A在同一平面內(nèi),M、E、CN在同一條直線上.

1)求BN的長度;

2)求條幅AB的長度(結(jié)果保留根號).

(參考數(shù)據(jù):sin48°≈,tan48°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線鈾交于兩點(diǎn)(點(diǎn)作點(diǎn)的左側(cè)),與軸交于點(diǎn),點(diǎn)為拋物線的對稱軸右側(cè)圖象上的一點(diǎn).

1a的值為_ ,拋物線的頂點(diǎn)坐標(biāo)為_

2)設(shè)拋物線在點(diǎn)和點(diǎn)之間部分(含點(diǎn)和點(diǎn))的最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為,求關(guān)于的函數(shù)表達(dá)式,并寫出自變量的取值范圍;

3)當(dāng)點(diǎn)的坐標(biāo)滿足:時(shí),連接,若為線段上一點(diǎn),且分四邊形的面積為相等兩部分,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線 相交于和點(diǎn)兩點(diǎn).

⑴求拋物線的函數(shù)表達(dá)式;

⑵若點(diǎn)是位于直線上方拋物線上的一動(dòng)點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);

⑶在拋物線的對稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案