【題目】如圖,在平面直角坐標(biāo)系中,直線l所在的直線的解析式為y=x,點(diǎn)B坐標(biāo)為(10,0)過B做BC⊥直線l,垂足為C,點(diǎn)P從原點(diǎn)出發(fā)沿x軸方向向點(diǎn)B運(yùn)動(dòng),速度為1單位/s,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿B→C→原點(diǎn)方向運(yùn)動(dòng),速度為2個(gè)單位/s,當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)OC= ,BC= ;
(2)當(dāng)t=5(s)時(shí),試在直線PQ上確定一點(diǎn)M,使△BCM的周長(zhǎng)最小,并求出該最小值;
(3)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),△PBQ的面積為y,當(dāng)△PBQ存在時(shí),求y與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
【答案】(1)8,6;(2)16;(3)y=.
【解析】
試題分析:(1)根據(jù)勾股定理,可得答案;
(2)根據(jù)線段垂直平分線的性質(zhì),可得直線PQ上的點(diǎn)到O、C的距離相等,根據(jù)兩點(diǎn)之間線段最短,可得M點(diǎn)與P點(diǎn)重合,根據(jù)三角形的周長(zhǎng),可得答案;
(3)根據(jù)速度與時(shí)間的關(guān)系,可得OP,BQ,根據(jù)正切函數(shù),可得QH,根據(jù)三角形的面積公式,可得答案.
解:(1)∵直線l所在的直線的解析式為y=x,BC⊥直線l,
∴=.
又∵OB=10,BC=3x,OC=4x,
∴(3x)2+(4x)2=102,
解得x=2,x=﹣2(舍),
OC=4x=8,BC=3x=6,
故答案為:8,6;
(2)如圖1:
,
PQ是OC的垂直平分線,OB交PQ于P即M點(diǎn)與P點(diǎn)重合,
M與P點(diǎn)重合時(shí)△BCM的周長(zhǎng)最小,
周長(zhǎng)最小為=BM+PM+BC=OB+BC=10+6=16;
(3)①當(dāng)0<t≤3時(shí),過Q作QH⊥OB垂足為H,如圖2:
,
PB=10﹣t,BQ=2t,HQ=2tsinB=2tcos∠COB=2t×=t,
y=PBQH=(10﹣t)t=﹣t2+8t;
②當(dāng)3<t<5時(shí),過Q作QH⊥OB垂足為H,如圖3:
,
PB=10﹣t,OQ=OC+BC﹣2t=14﹣2t,
QH=OQsin∠QOH=(14﹣2t)=(14﹣2t)=﹣t,
y=PBQH=(10﹣t)(﹣t)=t2﹣t+42,
綜上所述y=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是假命題的是( )
A. 對(duì)頂角相等 B. 同角的余角相等
C. 到線段兩端點(diǎn)距離 。.到角兩邊距離相等的點(diǎn),在這個(gè)角的角平型上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列圖形繞其對(duì)角線的交點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,所得圖形一定與原圖形重合的是( 。
A. 平行四邊形 B. 矩形 C. 菱形 D. 正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項(xiàng)式乘法,能用平方差公式進(jìn)行計(jì)算的是( )
A. (x+y)(-x-y) B. (2x+3y)(2x-3z) C. (-a-b)(a-b) D. (m-n)(n-m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點(diǎn)D與三角板ABC的斜邊中點(diǎn)O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動(dòng),讓三角板DEF繞點(diǎn)O旋轉(zhuǎn),設(shè)射線DE與射線AB相交于點(diǎn)P,射線DF與線段BC相交于點(diǎn)Q.
(1)如圖1,當(dāng)射線DF經(jīng)過點(diǎn)B,即點(diǎn)Q與點(diǎn)B重合時(shí),易證△APD∽△CDQ.此時(shí),APCQ= ;
(2)將三角板DEF由圖1所示的位置繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.其中0°<α<90°,問APCQ的值是否改變?說明你的理由;
(3)在(2)的條件下,設(shè)CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式.(圖2,圖3供解題用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(-3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H,連接BM.
(1)求直線AC的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC的方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);
(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB方向以2個(gè)單位/秒的速度向終點(diǎn)B勻速運(yùn)動(dòng),當(dāng)∠MPB與∠BCO互為余角時(shí),試確定t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com