如圖是王老師休假釣魚時的一張照片,魚桿前部分近似呈拋物線的形狀,后部分呈直線形.已知拋物線上關(guān)于對稱軸對稱的兩點B,C之間的距離為2米,頂點O離水面的高度為2
2
3
米,人握的魚桿底端D離水面1
1
3
米,離拐點C的水平距離1米,且仰角為45°,建立如圖所示的平面直角坐標(biāo)系.
(1)試根據(jù)上述信息確定拋物線BOC和CD所在直線的函數(shù)表達式;
(2)當(dāng)繼續(xù)向上拉魚使其剛好露出水面時,釣桿的傾斜角增大了15°,直線部分的長度變成了1米(即ED長為1米),頂點向上增高
2
3
米,且右移
1
2
米(即頂點變?yōu)镕),假設(shè)釣魚線與人手(點D)的水平距離為2
1
4
米,那么釣魚線的長度為多少米?
分析:(1)先設(shè)拋物線BOC的函數(shù)表達式為y=ax2.有C的坐標(biāo)求出a的值即可得到拋物線的解析式;設(shè)直線CD的函數(shù)表達式為y=kx+b,由C,D點的坐標(biāo)求出k和b的值即可求出直線的函數(shù)表達式;
(2)由已知條件求出E和F的坐標(biāo),設(shè)這時拋物線的函數(shù)表達式為y=m(x-
1
2
)2+
2
3
,又由已知A點的橫坐標(biāo)為-
1
4
,再把橫坐標(biāo)代入求出的函數(shù)關(guān)系式求出此時的縱坐標(biāo)即可求出釣魚線的長度為多少米.
解答:解:(1)由已知,得C(1,-
1
3
)

設(shè)拋物線BOC的函數(shù)表達式為y=ax2
a=-
1
3
,所以y=-
1
3
x2

(1,-
1
3
)
,(2,-1
1
3
)

k+b=-
1
3
2k+b=-
4
3
.

解得k=-1,b=
2
3

所以y=-x+
2
3


(2)由已知,得E(
3
2
,
3
2
-
4
3
)
,F(
1
2
,
2
3
)

設(shè)這時拋物線的函數(shù)表達式為y=m(x-
1
2
)2+
2
3

m(
3
2
-
1
2
)2+
2
3
=
3
2
-
4
3

所以m=
3
2
-2

所以y=(
3
2
-2)(x-
1
2
)2+
2
3

又由已知A點的橫坐標(biāo)為-
1
4
,得A(-
1
4
,
27
3
-44
96
)

所以釣魚線的最小長度為
27
3
+212
96
米.
點評:本題考查了用待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式,解決這類題目是恰當(dāng)?shù)匕堰@些實際問題中的數(shù)據(jù)落實到平面直角坐標(biāo)系中的拋物線上,從而確定拋物線的解析式,通過解析式可解決一些測量問題或其他問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年湖北省武漢市中考數(shù)學(xué)模擬試卷(十六)(解析版) 題型:解答題

如圖是王老師休假釣魚時的一張照片,魚桿前部分近似呈拋物線的形狀,后部分呈直線形.已知拋物線上關(guān)于對稱軸對稱的兩點B,C之間的距離為2米,頂點O離水面的高度為米,人握的魚桿底端D離水面米,離拐點C的水平距離1米,且仰角為45°,建立如圖所示的平面直角坐標(biāo)系.
(1)試根據(jù)上述信息確定拋物線BOC和CD所在直線的函數(shù)表達式;
(2)當(dāng)繼續(xù)向上拉魚使其剛好露出水面時,釣桿的傾斜角增大了15°,直線部分的長度變成了1米(即ED長為1米),頂點向上增高米,且右移米(即頂點變?yōu)镕),假設(shè)釣魚線與人手(點D)的水平距離為米,那么釣魚線的長度為多少米?

查看答案和解析>>

同步練習(xí)冊答案