【題目】如圖,已知點A、B、C是數(shù)軸上三點,O為原點.點C對應的數(shù)為6,BC=4,AB=12.
(1)求點A、B對應的數(shù);
(2)動點P、Q分別同時從A、C出發(fā),分別以每秒6個單位和3個單位的速度沿數(shù)軸正方向運動.M為AP的中點,N在CQ上,且CN=CQ,設運動時間為t(t>0).
①求點M、N對應的數(shù)(用含t的式子表示); ②t為何值時,OM=2BN.
【答案】(1)點B表示的數(shù)是2,點A表示的數(shù)是﹣10;(2)①M表示的數(shù)是﹣10+3t,N表示的數(shù)是6+t,②當t=18秒或t=秒時OM=2BN.
【解析】
(1)點B表示的數(shù)是6-4,點A表示的數(shù)是2-12,求出即可;
(2)①求出AM,CN,根據(jù)A、C表示的數(shù)求出M、N表示的數(shù)即可;②求出OM、BN,得出方程,求出方程的解即可.
(1)∵點C對應的數(shù)為6,BC=4,
∴點B表示的數(shù)是6﹣4=2,
∵AB=12,
∴點A表示的數(shù)是2﹣12=﹣10.
(2)①∵動點P、Q分別同時從A、C出發(fā),分別以每秒6個單位和3個單位的速度,時間是t,
∴AP=6t,CQ=3t,
∵M為AP的中點,N在CQ上,且CN=CQ,
∴AM=AP=3t,CN=CQ═t,
∵點A表示的數(shù)是﹣10,C表示的數(shù)是6,
∴M表示的數(shù)是﹣10+3t,N表示的數(shù)是6+t.
②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,
∴|﹣10+3t|=2(4+t)=8+2t,
由﹣10+3t=8+2t,得t=18,
由﹣10+3t=﹣(8+2t),得t=,
故當t=18秒或t=秒時OM=2BN.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC的邊AB上一點,CE∥AB,DE交AC于點F,若FA=FC.
(1)求證:四邊形ADCE是平行四邊形;
(2)若AE⊥EC,EF=EC=1,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】騰飛中學在教學樓前新建了一座“騰飛”雕塑(如圖①).為了測量雕塑的高度,小明在二樓找到一點C,利用三角板測得雕塑頂端A點的仰角為,底部B點的俯角為,小華在五樓找到一點D,利用三角板測得A點的俯角為(如圖②).若已知CD為10米,請求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的圖象經(jīng)過點A(﹣2,0),點B(4,0),點D(2,4),與y軸交于點C,作直線BC,連接AC,CD.
(1)求拋物線的函數(shù)表達式;
(2)E是拋物線上的點,求滿足∠ECD=∠ACO的點E的坐標;
(3)點M在y軸上且位于點C上方,點N在直線BC上,點P為第一象限內(nèi)拋物線上一點,若以點C,M,N,P為頂點的四邊形是菱形,求菱形的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師提出如下問題:
尺規(guī)作圖:作一條線段的垂直平分線.
已知:線段AB.
求作:線段AB的垂直平分線.
小紅的作法如下:
如圖,①分別以點A和點B為圓心,大于AB的長為半徑作弧,兩弧相交于點C;
②再分別以點A和點B為圓心,大于AB的長為半徑(不同于①中的半徑)作弧,兩弧相交于點D,使點D與點C在直線AB的同側(cè);
③作直線CD.
所以直線CD就是所求作的垂直平分線.
老師說:“小紅的作法正確.”
請回答:小紅的作圖依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,橫坐標為a的點 A在反比例函數(shù)的圖象上,點與點關(guān)于點對稱,一次函數(shù)的圖象經(jīng)過點
(1)設,點(4,2)在函數(shù) , 的圖像上.
①分別求函數(shù) ,的表達式;
②直接寫出使 成立的的范圍;
(2)如圖①,設函數(shù) ,的圖像相交于點,點的橫坐標為,△的面積為16,求 的值;
(3)設,如圖②,過點作 軸,與函數(shù)的圖像相交于點,以為一邊向右側(cè)作正方形,試說明函數(shù)的圖像與線段的交點一定在函數(shù)的圖像上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( 。
A. 36=15+21 B. 25=9+16 C. 13=3+10 D. 49=18+31
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC<BC,點D在AC的延長線上,點E在BC邊上,且BE=AD,
(1) 如圖1,連接AE,DE,當∠AEB=110°時,求∠DAE的度數(shù);
(2) 在圖2中,點D是AC延長線上的一個動點,點E在BC邊上(不與點C重合),且BE=AD,連接AE,DE,將線段AE繞點E順時針旋轉(zhuǎn)90°得到線段EF,連接BF,DE.
①依題意補全圖形;
②求證:BF=DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象為直線l1,經(jīng)過A(0,4)和D(4,0)兩點,一次函數(shù)y=x+1的圖象為直線l2,與x軸交于點C,兩直線l1,l2相交于點B.
(1)求k,b的值;
(2)求點B的坐標;
(3)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com