【題目】中,AB,BC,AC三邊的長分別為、,求這個三角形的面積小輝同學在解答這道題時,先建立一個正方形網(wǎng)格每個小正方形的邊長為,再在網(wǎng)格中畫出格點的三個頂點都在正方形的頂點處,如圖所示,這樣不需要求的高,而借用網(wǎng)格就能計算出它的面積.

請你將的面積直接填寫在橫線上.______

已知,DE、EF、DF三邊的長分別為、,

是否為直角形,并說明理由.

求這個三角形的面積.

【答案】(1)(2)①不是②5

【解析】

根據(jù)題目設(shè)置的問題背景,結(jié)合圖形進行計算即可;

根據(jù)勾股定理,找到DE、EF、DF的長分別為、,由勾股定理的逆定理可判斷不是直角三角形,然后根據(jù)三角形的面積公式即可得到結(jié)論.

故答案為:;

如圖所示:不是直角三角形,

理由:,

,

不是直角三角形.

的面積

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E.F分別在AB、CD上,AE=CF,連接AF,BFDE,CE,分別交于H、G.

求證:(1)四邊形AECF是平行四邊形。(2)EFGH互相平分。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的頂點C在y軸正半軸上,CD平行于x軸,直線AC交x軸于點E,BC⊥AC,連接BE,反比例函數(shù) (x>0)的圖象經(jīng)過點D.已知SBCE=2,則k的值是( )

A.2
B.﹣2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某物流公司引進A、B兩種機器人用來搬運某種貨物,這兩種機器人充滿電后可以連續(xù)搬運5小時,A種機器人于某日0時開始搬運,過了1小時,B種機器人也開始搬運,如圖,線段OG表示A種機器人的搬運量yA(千克)與時間x(時)的函數(shù)圖象,線段EF表示B種機器人的搬運量yB(千克)與時間x(時)的函數(shù)圖象.根據(jù)圖象提供的信息,解答下列問題:

(1)求yB關(guān)于x的函數(shù)解析式;
(2)如果A、B兩種機器人連續(xù)搬運5個小時,那么B種機器人比A種機器人多搬運了多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家在同一直角坐標系中,小亮和媽媽的行進路程與北京時間的函數(shù)圖象如圖所示,根據(jù)圖象得到如下結(jié)論,其中錯誤的是  

A. 9:00媽媽追上小亮B. 媽媽比小亮提前到達姥姥家

C. 小亮騎自行車的平均速度是D. 媽媽在距家13km處追上小亮

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程組與不等式(組),并把不等式(組)解集表示在數(shù)軸上.

1

2

3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如下表:

X

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:
⑴ac<0;
⑵當x>1時,y的值隨x值的增大而減小.
⑶3是方程ax2+(b﹣1)x+c=0的一個根;
⑷當﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的個數(shù)為( )
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應(yīng)的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應(yīng)的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲有存款600元,乙有存款2000元,從本月開始,他們進行零存整取儲蓄,甲每月存款500元,乙每月存款200元.

1)列出甲、乙的存款額y1、y2(元)與存款月數(shù)x(月)之間的函數(shù)關(guān)系式,畫出函數(shù)圖象.

2)請問到第幾個月,甲的存款額超過乙的存款額?

查看答案和解析>>

同步練習冊答案