【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為(,),點的坐標(biāo)為(,),點C的坐標(biāo)為(,).
(1)在圖中作出的外接圓(利用格圖確定圓心);
(2)圓心坐標(biāo)為 _____;外接圓半徑為 _____;
(3)若在軸的正半軸上有一點,且,則點的坐標(biāo)為 _____.
【答案】(1)確定圓心,畫出圓見解析;(2)圓心坐標(biāo)(5,5),半徑為;(3)點D的坐標(biāo)(7,0).
【解析】
(1)分別作三角形任意兩邊的垂直平分線,其交點即為圓心,到三角形三頂點的距離為半徑作圓即可;(2)通過A,B,C三點坐標(biāo)分別算出AB和BC的垂直平分線解析式,交點即為圓心,根據(jù)勾股定理算出圓心到C點的距離即為半徑;(3)要使在軸的正半軸上有一點,且,根據(jù)圓周角定理知圓與x軸的另一交點即為D,設(shè)D點坐標(biāo)為(x,0),根據(jù)ED=r解出即可.
(1)分別作三角形任意兩邊的垂直平分線,其交點即為圓心,到三角形三頂點的距離為半徑作圓即可;
(2)∵點的坐標(biāo)為(0,7),點的坐標(biāo)為(0,3),點C的坐標(biāo)為(3,0),
∴AB的垂直平分線為y=5,
設(shè)BC的解析式為y=kx+b,把B(0,3),C(3,0)代入解得y=-x+3,則BC的垂直平分線的k=1,BC的中點坐標(biāo)為(),則BC的垂直平分線為y=x,
則y=5與y=x的交點為(5,5),故圓心為(5,5),
記圓心為點E,則EC==,即半徑r=;
(3)要使在x軸的正半軸上有一點D,且,根據(jù)圓周角定理知圓與x軸的另一交點即為D,設(shè)D點坐標(biāo)為(x,0),則ED==,解得x1=3,x2=7,x=3為C點,則D點坐標(biāo)為(7,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,書中記載:“今有中,不知大小.以鋸鋸之,深1寸,鋸道長1尺,問經(jīng)幾何?“其意思為:“如圖,今有一圓形木材在墻中,不知其大小用鋸子去鋸這個木材,鋸口深DE=1寸,鋸道長AB=10寸,問這塊圓形木材的直徑是多少?”
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅客攜帶xkg的行李乘飛機,登機前,旅客可選擇托運或快遞行李,托運費y1(元)與行李重量xkg的對應(yīng)關(guān)系由如圖所示的一次函數(shù)圖象確定,下表列出了快遞費y2(元)與行李重量xkg的對應(yīng)關(guān)系.
行李的重量xkg | 快遞費 |
不超過1kg | 10元 |
超過1kg但不超過5kg的部分 | 3元/kg |
超過5kg但不超過15kg的部分 | 5元/kg |
(1)如果旅客選擇單托運,求可攜帶的免費行李的最大重量為多少kg?
(2)如果旅客選擇快遞,當(dāng)1<x≤15時,直接寫出快遞費y2(元)與行李的重量xkg之間的函數(shù)關(guān)系式;
(3)某旅客攜帶25kg的行李,設(shè)托運mkg行李(10≤m<24,m為正整數(shù)),剩下的行李選擇快遞,當(dāng)m為何值時,總費用y的值最。坎⑶蟪銎渥钚≈凳嵌嗌僭?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在學(xué)習(xí)與圓有關(guān)的角時了解到:在同圓或等圓中,同弧(或等。┧鶎Φ膱A周角相等.如圖,點A、B、C、D均為⊙O上的點,則有∠C=∠D.
小明還發(fā)現(xiàn),若點E在⊙O外,且與點D在直線AB同側(cè),則有∠D >∠E. 請你參考小明得出的結(jié)論,解答下列問題:
(1)如圖1,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(0,7),點B的坐標(biāo)為(0,3),點C的坐標(biāo)為(3,0) .①在圖1中作出△ABC的外接圓(保留必要的作圖痕跡,不寫作法);
②若在軸的正半軸上有一點D,且∠ACB =∠ADB,則點D的坐標(biāo)為________;
(2) 如圖2,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(0,m),點B的坐標(biāo)為(0,n),其中m>n>0.點P為軸正半軸上的一個動點,當(dāng)∠APB達(dá)到最大時,直接寫出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,過點O作OD⊥AB,交BC的延長線于D,交AC于點E,F是DE的中點,連接CF.
(1)求證:CF是⊙O的切線.
(2)若∠A=22.5°,求證:AC=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊的邊長為8,點P是AB邊上的一個動點(與點A、B不重合),直線是經(jīng)過點P的一條直線,把沿直線折疊,點B的對應(yīng)點是點.
(1)如圖1,當(dāng)時,若點恰好在AC邊上,則的長度為 ;
(2)如圖2,當(dāng)時,若直線,則的長度為 ;
(3)如圖3,點P在AB邊上運動過程中,若直線始終垂直于AC,的面積是否變化?若變化,說明理由;若不變化,求出面積;
(4)當(dāng)時,在直線變化過程中,求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是Rt△ABC的外接圓,點D是O上的一個動點,且C,D位于AB的兩側(cè),聯(lián)結(jié)AD,BD,過點C作CE⊥BD,垂足為E。延長CE交O于點F,CA,FD的延長線交于點P。
求證:(1)弧AF=弧DC;
(2)△PAD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣3x+m(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關(guān)于x的一元二次方程x2﹣3x+m=0的兩實數(shù)根是( )
A. x1=1,x2=﹣1B. x1=1,x2=3C. x1=1,x2=2D. x1=1,x2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公園內(nèi)一涼亭,涼亭頂部是一圓錐形的頂蓋,立柱垂直于地面,在涼亭內(nèi)中央位置有一圓形石桌,某數(shù)學(xué)研究性學(xué)習(xí)小組,將此涼亭作為研究對象,并繪制截面示意圖,其中頂蓋母線AB與AC的夾角為124°,涼亭頂蓋邊緣B、C到地面的距離為2.4米,石桌的高度DE為0.6米,經(jīng)觀測發(fā)現(xiàn):當(dāng)太陽光線與地面的夾角為42°時,恰好能夠照到石桌的中央E處(A、E、D三點在一條直線上),請你求出圓錐形頂蓋母線AB的長度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin62°≈0.88,tan42°≈0.90)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com