【題目】如圖,兩棵樹的高度分別為AB=6 m,CD=8 m,兩樹的根部間的距離AC=4 m,小強(qiáng)沿著正對這兩棵樹的方向從左向右前進(jìn),如果小強(qiáng)的眼睛與地面的距離為1.6 m,當(dāng)小強(qiáng)與樹AB的距離小于多少時(shí),就不能看到樹CD的樹頂D?
【答案】8.8
解:設(shè)FG=x米.那么FH=x+GH=x+AC=x+4(米),
∵AB=6m,CD=8m,小強(qiáng)的眼睛與地面的距離為1.6m,
∴BG=4.4m,DH=6.4m,
∵BA⊥PC,CD⊥PC,
∴AB∥CD,
∴FG:FH=BG:DH,即FGDH=FHBG,
∴x×6.4=(x+4)×4.4,
解得x=8.8(米),
因此小于8.8米時(shí)就看不到樹CD的樹頂D.
【解析】
本題主要考查了平行線分線段成比例的實(shí)際應(yīng)用,利用數(shù)學(xué)知識解決實(shí)際問題是中學(xué)數(shù)學(xué)的重要內(nèi)容.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,a),B(﹣1,2)是一次函數(shù)y1=kx+b與反比例函數(shù)y2=(m<0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C.
(1)求出k,b及m的值.
(2)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)y1>y2時(shí),x的取值范圍是 ________.
(3)若P是線段AB上的一點(diǎn),連接PC,若△PCA的面積等于,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結(jié)論:
(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;
(2)當(dāng)﹣<x<2時(shí),y<0;
(3)a﹣b+c=0;
(4)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè)
則其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座跨河拱橋,橋拱是圓弧形,跨度AB為16米,拱高CD為4米.
(1)求橋拱的半徑R.
(2)若大雨過后,橋下水面上升到EF的位置,且EF的寬度為12米,求拱頂C到水面EF的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m。
(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時(shí),球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論中:①;②;③;④;⑤當(dāng)時(shí),隨的增大而增大.以上結(jié)論正確的有________(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,對稱軸為直線,圖象經(jīng)過,下列結(jié)論:①,②,③,④,其中正確的是( )
A. ①②③④ B. ①③④ C. ①③ D. ①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下框中是小明對一道題目的解答以及老師的批改.
題目:某村計(jì)劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2∶1,在溫室內(nèi),沿前側(cè)內(nèi)墻保留3 m的空地,其他三側(cè)內(nèi)墻各保留1 m的通道,當(dāng)溫室的長與寬各為多少時(shí),矩形蔬菜種植區(qū)域的面積是288 m2?
解:設(shè)矩形蔬菜種植區(qū)域的寬為x_m,則長為2xm,
根據(jù)題意,得x·2x=288.
解這個(gè)方程,得x1=-12(不合題意,舍去),x2=12,
所以溫室的長為2×12+3+1=28(m),寬為12+1+1=14(m)
答:當(dāng)溫室的長為28 m,寬為14 m時(shí),矩形蔬菜種植區(qū)域的面積是288 m2.
我的結(jié)果也正確!
小明發(fā)現(xiàn)他解答的結(jié)果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個(gè)?.
結(jié)果為何正確呢?
(1)請指出小明解答中存在的問題,并補(bǔ)充缺少的過程:變化一下會怎樣?
(2)如圖,矩形A′B′C′D′在矩形ABCD的內(nèi)部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,設(shè)AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應(yīng)滿足什么條件?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線和x軸交于兩點(diǎn)A、B,和y軸交于點(diǎn)C,已知A、B兩點(diǎn)的橫坐標(biāo)分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線頂點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com