【題目】已知,如圖,等邊△ABC中,AD=DC,BF=FC,△BDE是等邊三角形.求證:四邊形AEBF是矩形.

【答案】見解析

【解析】

根據(jù)等邊三角形的性質(zhì)可得AF=BD=BE,再求出∠EBF=∠AFB=90°,連接EF,然后利用“邊角邊”證明△ABF和△EFB全等,根據(jù)全等三角形對應(yīng)邊相等可得AB=EF,再證出四邊形AEBF是平行四邊形,然后根據(jù)對角線相等的平行四邊形是矩形證明即可.

證明:連接EF,

∵等邊△ABC中,點(diǎn)DAC的中點(diǎn),FBC的中點(diǎn),
∴AF=BD,∠CBD=30°,∠AFB=90°
∵△BDE是等邊三角形,
∴BE=BD,∠DBE=60°,

∴∠EBF=∠DBE+∠CBD=90°
∴AF=BD=BE,∠EBF=∠AFB,
在△ABF和△EFB中,
∴△ABF≌△EFB(SAS),
∴AB=EF,
∵∠AFB=∠EBF=90°,
∴AF∥BE,
又∵AF=BE,
∴四邊形AEBF是平行四邊形,
∵AB=EF,
∴四邊形AEBF是矩形,
AB=EF,且四邊形AEBF是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題.

用棋子擺成的T字形圖如圖所示:

(1)填寫下表:

圖形序號

每個(gè)圖案中棋子個(gè)數(shù)

5

8

(2)寫出第n個(gè)T字形圖案中棋子的個(gè)數(shù)_________________(用含n的代數(shù)式表示)

(3)20個(gè)T字形圖案共有棋子____________個(gè)?

(4)計(jì)算前20個(gè)T字形圖案中棋子的總個(gè)數(shù).

(提示:請你先思考下列問題:第1個(gè)圖案與第20個(gè)圖案中共有多少個(gè)棋子?第2個(gè)圖案與第19個(gè)圖案中共有多少個(gè)棋子?第3個(gè)圖案與第18個(gè)圖案呢?)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:已知:A2a2+3ab2a1B=﹣a2+ab1

1)求2A3B;

2)若A+2B的值與a的取值無關(guān),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAE+∠AED180°,∠1=∠2,那么∠M=∠N.下面是推理過程,請你填空:

解:∵∠BAE+∠AED180° (已知) ,

AB//DE(       ),

∠BAE (       )

∵∠1=∠2(已知)

∴∠BAE-∠1       (等式性質(zhì)),

即∠MAE=∠NEA

      ),

∴∠M=∠N(兩直線平行,內(nèi)錯(cuò)角相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,O為線段AB上一點(diǎn),AB=6,OC為射線,且∠BOC=60°,動點(diǎn)P以每秒2個(gè)單位長度的速度從點(diǎn)O出發(fā),沿射線OC做勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒.

(1)若AO=4,
①當(dāng)t=1秒時(shí),OP= , SABP=;
②當(dāng)△ABP是直角三角形時(shí),求t的值;
(2)如圖2,若點(diǎn)O為AB中點(diǎn),當(dāng)AP=AB時(shí),過點(diǎn)A作AQ∥BP,并使得∠QOP=∠B,求AQBP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個(gè)圖象交于y軸上一點(diǎn)C,直線l2與x軸的交點(diǎn)B(2,0)

(1)求a、b的值;
(2)過動點(diǎn)Q(n,0)且垂直于x軸的直線與l1、l2分別交于點(diǎn)M、N都位于x軸上方時(shí),求n的取值范圍;
(3)動點(diǎn)P從點(diǎn)B出發(fā)沿x軸以每秒1個(gè)單位長的速度向左移動,設(shè)移動時(shí)間為t秒,當(dāng)△PAC為等腰三角形時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列各題.

1)不改變分式的值,把下列分子和分母的最高次的系數(shù)都化為正數(shù)________

2)不改變分式的值,把下列分子和分母的中各項(xiàng)系數(shù)都化為整數(shù)________

3)若分式的值是整數(shù),求整數(shù)的值.

4)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,點(diǎn)MN分別是AC、BC的中點(diǎn).

(1)若AC=9cm,CB=6cm,求線段MN的長;

(2)若C為線段AB上任一點(diǎn),滿足AC+CBacm,其它條件不變,你能猜想MN的長度嗎?并說明理由.

(3)若C在線段AB的延長線上,且滿足AC-BCbcm,MN分別為AC、BC的中點(diǎn),你能猜想MN的長度嗎?請畫出圖形,并直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ly=x,過點(diǎn)A(0,1)y軸的垂線交直線l于點(diǎn)B,過點(diǎn)B作直線l的垂線交y軸于點(diǎn)A1;過點(diǎn)A1y軸的垂線交直線l于點(diǎn)B1,過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;按此作法繼續(xù)下去,點(diǎn)B2013的坐標(biāo)為(  )

A. (42012×,42012) B. (24026×24026) C. (24026×,24024) D. (44024×,44024)

查看答案和解析>>

同步練習(xí)冊答案