【題目】已知二次函數(shù)的圖象的對稱軸是直線,它與軸交于兩點,與軸交與點,點、的坐標(biāo)分別是

(1)請在平面直角坐標(biāo)系內(nèi)畫出示意圖;

(2)求此圖象所對應(yīng)的函數(shù)關(guān)系式;

(3)若點是此二次函數(shù)圖象上位于軸上方的一個動點,求面積的最大值.

【答案】(1)詳見解析;(2);(3)面積的最大值為

【解析】

1)根據(jù)對稱性可求得B點坐標(biāo)為(3,0),再根據(jù)描點法,可畫出圖象

2)設(shè)拋物線的解析式為y=ax2+bx+c,A、B、C三點的坐標(biāo)代入可求得解析式;

3)根據(jù)題意AB長度不變,則當(dāng)點Px軸遠則△ABP的面積越大,可知點P為頂點可求得頂點坐標(biāo),再計算出△APB的面積即可

1∵對稱軸為x=1A為(﹣1,0),B為(30),∴拋物線圖象示意圖如圖所示

2)設(shè)拋物線的解析式為y=ax2+bx+c

∵圖象過AB、C三點∴把三點的坐標(biāo)代入可得,解得,∴拋物線解析式為y=﹣x2+x+;

3)根據(jù)題意可知當(dāng)P為頂點時△ABP的面積最大

y=﹣x2+x+=,其頂點坐標(biāo)為(1,2),AB=4,SABP=×4×2=4,即△ABP面積的最大值為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,點F、C在半徑OA、OB上,且OC=OF,以CF為邊作正方形CDEF,另兩頂點D、E在弧AB上,若扇形OAB的面積為25π,則正方形CDEF的面積為( 。

A. 25 B. 40 C. 50 D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=-1,有以下結(jié)論:①abc>0;4ac<b2;2a+b=0;a-b+c>0.其中正確的結(jié)論的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,上一點,平分,.

1)求證:

2)如圖(2),若,連接為邊上一點,滿足,連接. ①求的度數(shù);

②若平分,試說明:平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.

(1)求這個二次函數(shù)的解析式;

(2)動點P運動到什么位置時,PBC面積最大,求出此時P點坐標(biāo)和PBC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方格紙中的每個小方格都是邊長為1個單位的正方形在建立平面直角坐標(biāo)系后,ABC的頂點均在格點上C的坐標(biāo)為4,-1).

1請以y軸為對稱軸,畫出與△ABC對稱的△A1B1C1并直接寫出點A1、B1、C1的坐標(biāo);

2ABC的面積是

3Pa+1,b-1與點C關(guān)于x軸對稱,a= ,b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商人將進貨單價為元的某種商品按元銷售時,每天可賣出件.現(xiàn)在他采用提高售價的辦法增加利潤,已知這種商品銷售單價每漲元,銷售量就減少件,那么他將售價每個定為________元時,才能使每天所賺的利潤最大,每天最大利潤是________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在中,是高,是角平分線,它們相交于點,.求的度數(shù).

(2)一個多邊形的內(nèi)角和是外角和的3倍,它是幾邊形?若這個多邊形的各個內(nèi)角都相等,求這個多邊形的每個內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案