已知:如圖,點P在∠AOB的邊OA上.
(1)作圖(保留作圖痕跡)
①作∠AOB的平分線OM;
②以P為頂點,作∠APQ=∠AOB,PQ交OM于點C;
③過點C作CD⊥OB,垂足為點D.
(2)當∠AOB=30°時,求證:PC=2CD.

【答案】分析:(1)根據(jù)角平分線的作法以及作一角等于已知角進而得出圖形即可;
(2)利用在直角三角形中30度所對邊等于斜邊的一半得出即可.
解答:解:(1)如圖所示:

(2)過點P作PF⊥OB于點F,
∵∠APC=∠AOB,
∴PC∥OB,
∴∠PCO=∠POC,
∵OM平分∠AOB,
∴∠AOC=∠MOB,
∴∠POC=∠PCO,
∴OP=PC,
∵∠AOB=30°,∠PFO=90°,
∴PF=OP,
∵PC∥OB,PF⊥OB,CD⊥BO,
∴PF=DC,
∴DC=OP=PC,
即PC=2CD.
點評:本題主要考查了角平分線的作法以及作一角等于已知角以及到角平分線的性質(zhì)等知識,利用平行線的性質(zhì)以及30度所對邊等于斜邊的一半得出是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(1998•南京)已知:如圖,點P在∠AOB的邊OA上.
(1)作圖(保留作圖痕跡)
①作∠AOB的平分線OM;
②以P為頂點,作∠APQ=∠AOB,PQ交OM于點C;
③過點C作CD⊥OB,垂足為點D.
(2)當∠AOB=30°時,求證:PC=2CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點C在BE上,AB∥ED,AB=CE,BC=ED.
求證:∠ACB=∠D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點D在AB上,點E在AC上,BE和CD相交于點O,AB=AC,∠B=∠C.求證:BD=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,點F在AB上,點E在CD上,AE、DF分別交BC于H、G,∠A=∠D,∠FGB+∠EHG=180°,問AB與CD有怎樣的位置關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知:如圖,點C在線段AB上,AC=18cm,BC=6cm,點M、N分別是AC、BC的中點,求MN的長;
(2)把(1)中的“點C在線段AB上”改為“點C在直線AB上”,其它條件不變,則MN的長是多少?請說明你的理由.

查看答案和解析>>

同步練習冊答案