【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.

(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.

【答案】
(1)證明:如圖,∵AD⊥CE,∠ACB=90°,

∴∠ADC=∠ACB=90°,

∴∠BCE=∠CAD(同角的余角相等).

在△ADC與△CEB中,

∴△ADC≌△CEB(AAS)


(2)由(1)知,△ADC≌△CEB,則AD=CE=5cm,CD=BE.

如圖,∵CD=CE﹣DE,

∴BE=AD﹣DE=5﹣3=2(cm),即BE的長度是2cm


【解析】(1)根據(jù)全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的對應(yīng)邊相等得到:AD=CE=5cm,CD=BE.則根據(jù)圖中相關(guān)線段的和差關(guān)系得到BE=AD﹣DE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一般的二次函數(shù)y=x2+bx+c,經(jīng)過配方可化為y=(x﹣1)2+2,則b,c的值分別為( )
A.5,﹣1
B.2,3
C.﹣2,3
D.﹣2,﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式:
= =1﹣ = = , = = , = = ,…
(1)由此可推導(dǎo)出 =;
(2)猜想出能表示上述特點的一般規(guī)律,用含字母n的等式表示出來(n是正整數(shù));
(3)請用(2)中的規(guī)律計算 + +…+ 的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】代數(shù)式x2+x+3的值為7,則代數(shù)式2x2+2x﹣3的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2=2x的根是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣50與49之間,所有整數(shù)的和是(
A.﹣48
B.48
C.﹣49
D.49

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x23x=-1的常數(shù)項是 _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)已知,如圖①,在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E,求證:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角,請問結(jié)論DE=BD+CE是否成立?若成立,請你給出證明:若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)已知,如圖①,在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E,求證:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角,請問結(jié)論DE=BD+CE是否成立?若成立,請你給出證明:若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案