【題目】如圖,在平面直角坐標系中,O為坐標原點,直線l1:y=kx+4與y軸交于點A,與x軸交于點B.
(1)請直接寫出點A的坐標:______;
(2)點P為線段AB上一點,且點P的橫坐標為m,現(xiàn)將點P向左平移3個單位,再向下平移4個單位,得點P′在射線AB上.
①求k的值;
②若點M在y軸上,平面內有一點N,使四邊形AMBN是菱形,請求出點N的坐標;
③將直線l1繞著點A順時針旋轉45°至直線l2,求直線l2的解析式.
【答案】(1)(0,4);(2)①k=;②N(-3,);③直線l2的解析式為y=x+4.
【解析】
(1)令,求出相應的y值,即可得到A的坐標;
(2)①先設出P的坐標,然后通過點的平移規(guī)律得出平移后 的坐標,然后將代入 中即可求出k的值;
②作AB的中垂線與y軸交于M點,連結BM,分別作AM,BM的平行線,相交于點N,則四邊形AMBN是菱形, 設M(0,t),然后利用勾股定理求出t的值,從而求出OM的長度,然后利用BN=AM求出BN的長度,即可得到N的坐標;
③先根據(jù)題意畫出圖形,過點B作BC⊥l1,交l2于點C,過點C作CD⊥x軸于D,利用等腰三角形的性質和AAS證明△AOB≌△BDC,得出AO=BD,OB=DC,進一步求出點C的坐標,然后利用待定系數(shù)法即可求出直線l2的解析式.
(1)∵y=kx+4與y軸交于點A,
令, ,
∴A(0,4).
(2)①由題意得:P(m,km+4),
∵將點P向左平移3個單位,再向下平移4個單位,得點P′,
∴P′(m-3,km),
∵P′(m-3,km)在射線AB上,
∴k(m-3)+4=km,
解得:k=.
②如圖,作AB的中垂線與y軸交于M點,連結BM,過點B作AM的平行線,過點A作BM的平行線,兩平行線相交于點N,則四邊形AMBN是菱形.
,
,
當 時,,解得 ,
∴ .
設M(0,t),則AM=BM=4-t,
在Rt△BOM中,OB2+OM2=BM2,
即32+t2=(4-t)2,
解得:t=,
∴M(0,),
∴OM=,BN=AM=4-=,
∴N(-3,).
③如圖,過點B作BC⊥l1,交l2于點C,過點C作CD⊥x軸于D.則∠ABC=∠BDC=90°,
∵∠BAC=45°,
∴△ABC是等腰直角三角形,
∴AB=BC,∠ABO+∠CBD=90°,
又∵∠ABO+∠BAO=90°,
∴∠BAO=∠CBD,
在和中,
∴△AOB≌△BDC(AAS),
∴AO=BD=4,OB=DC=3,
∴OD=OB+BD=3+4=7,
∴C(-7,3),
設直線 l2的解析式為:y=ax+4,
則-7a+4=3,
解得:a=.
∴直線 l2的解析式為:y=x+4.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論: ①a+b+c<0;②a–b+c<0;③b+2a<0;④abc>0,其中正確的是 (填寫正確的序號)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1.在△ABC中,∠B=60°,∠DAC和∠ACE的角平分線交于點O,則∠O= °,
(2)如圖2,若∠B=α,其他條件與(1)相同,請用含α的代數(shù)式表示∠O的大小;
(3)如圖3,若∠B=α,,則∠P= (用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AC、BD交于點O,BD⊥AD于點D,將△ABD沿BD翻折得到△EBD,連接EC、EB.
(1)求證:四邊形DBCE是矩形;
(2)若BD=4,AD=3,求點O到AB的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學生的閱讀興趣.某校為滿足學生的閱讀需求,欲購進一批學生喜歡的圖書,學校組織學生會成員隨機抽取部分學生進行問卷調查,被調查學生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調查結果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:
(1)此次共調查了 名學生;
(2)將條形統(tǒng)計圖補充完整;
(3)圖2中“小說類”所在扇形的圓心角為 度;
(4)若該校共有學生2500人,估計該校喜歡“社科類”書籍的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1:在平面直角坐標系內,O為坐標原點,線段AB兩端點在坐標軸上且點A(﹣4,0),點B(0,3),將AB向右平移4個單位長度至OC的位置
(1)直接寫出點C的坐標 ;
(2)如圖2,過點C作CD⊥x軸于點D,在x軸正半軸有一點E(1,0),過點E作x軸的垂線,在垂線上有一動點P,直接寫出:①點D的坐標 ; ②三角形PCD的面積為 ;
(3)如圖3,在(2)的條件下,連接AC,當△ACP的面積為時,直接寫出點P的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春節(jié)前小王花1200元從農貿市場購進批發(fā)價分別為每箱30元與50元的A,B兩種水果進行銷售,并分別以每箱35元與60元的價格出售,設購進A水果x箱,B水果y箱.
(1)讓小王將水果全部售出共賺了215元,則小王共購進A、B水果各多少箱?
(2)若要求購進A水果的數(shù)量不得少于B水果的數(shù)量,則應該如何分配購進A, B水果的數(shù)量并全部售出才能獲得最大利潤,此時最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com