【題目】如圖,在□ABCD中,E是AD的中點,延長CB到點F,使,連接BE、AF.
(1)完成畫圖并證明四邊形AFBE是平行四邊形;
(2)若AB=6,AD=8,∠C=60°,求BE的長.
科目:初中數學 來源: 題型:
【題目】已知△ABC的面積是60,請完成下列問題:
(1)如圖①,若AD是△ABC的BC邊上的中線,則△ABD的面積 _△ACD的面積(選填“>”“<”或“=”).
(2)如圖②,若CD,BE分別是△ABC的AB,AC邊上的中線,求四邊形ADOE的面積可以用如下方法:連接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,設S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=y(tǒng),由題意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程組為: ,通過解這個方程組可得四邊形ADOE的面積為 .
(3)如圖③,AD∶DB=1∶3,CE∶AE=1∶2,請你計算四邊形ADOE的面積,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】世界讀書日,新華書店矩形購書優(yōu)惠活動:①一次性購書不超過100元,不享受打折優(yōu)惠;②一次性購書超過100元但不超過200元一律八折;③一次性購書200元以上一律打六折.小麗在這次活動中,兩次購書總共付款190.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是_____元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.
證明:連結DB,過點D作BC邊上的高DF,則DF=EC=b﹣a,
∵S四邊形ADCB=S△ACD+S△ABC= 12 b2+ 12 ab.
又∵S四邊形ADCB=S△ADB+S△DCB= 12 c2+ 12 a(b﹣a)
∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖2是裝有三個小輪的手拉車在“爬”樓梯時的側面示意圖,定長的輪架桿OA,OB,OC抽象為線段,有OA=OB=OC,且∠AOB=120°,折線NG﹣GH﹣HE﹣EF表示樓梯,GH,EF是水平線,NG,HE是鉛垂線,半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點H在線段OB時,則 的值是;
(2)如果一級樓梯的高度HE=(8 +2)cm,點H到線段OB的距離d滿足條件d≤3cm,那么小輪子半徑r的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E為AD上一點,FG⊥CE分別交AB、CD于F、G,垂足為O.
(1)求證:CE=FG;
(2)如圖2,連接OB,若AD=3DE,∠OBC=2∠DCE。
求的值;
若AD=3,則OE的長為_________(直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對稱軸的拋物線過A,B,C三點.
(1)求該拋物線的函數解析式;
(2)已知直線l的解析式為y=x+m,它與x軸交于點G,在梯形ABCO的一邊上取點P.
①當m=0時,如圖1,點P是拋物線對稱軸與BC的交點,過點P作PH⊥直線l于點H,連結OP,試求△OPH的面積;
②當m=﹣3時,過點P分別作x軸、直線l的垂線,垂足為點E,F(xiàn).是否存在這樣的點P,使以P,E,F(xiàn)為頂點的三角形是等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,沿過B點的一條直線BE折疊這個三角形, 使C點與AB邊上的一點D重合.
(1)當∠A滿足什么條件時,點D恰為AB的中點?寫出一個你認為適當的條件,并利用此條件證明D為AB的中點;
(2)在(1)的條件下,若DE=1,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B分別為數軸上的兩點,A點對應的數為﹣20,B點對應的數為100.
(1)請寫出與A,B兩點距離相等的點M所對應的數 .
(2)現(xiàn)有一只電子螞蟻P從B點出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動,x秒后兩只電子螞蟻在數軸上的C點相遇,請列方程求出x,并指出點C表示的數.
(3)若當電子螞蟻P從B點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動,y秒后兩只電子螞蟻在數軸上的D點相遇,請列方程求出y并指出點D表示的數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com