【題目】如圖,在平行四邊形ABCD中,點(diǎn)O是對角線AC的中點(diǎn),點(diǎn)E是BC上一點(diǎn),且AB=AE,連接EO并延長交AD于點(diǎn)F.過點(diǎn)B作AE的垂線,垂足為H,交AC于點(diǎn)G.
(1)若AH=3,HE=1,求△ABE的面積;
(2)若∠ACB=45°,求證:DF=CG.
【答案】(1)2;(2)詳見解析.
【解析】
(1)利用勾股定理即可得出BH的長,進(jìn)而運(yùn)用公式得出△ABE的面積;
(2)過A作AM⊥BC于M,交BG于K,過G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,進(jìn)而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=CG.
解:(1)∵AH=3,HE=1,
∴AB=AE=4,
又∵Rt△ABH中,BH=,
∴S△ABE=;
(2)如圖,過A作AM⊥BC于M,交BG于K,過G作GN⊥BC于N,則∠AMB=∠AME=∠BNG=90°,
∵∠ACB=45°,
∴∠MAC=∠NGC=45°,
∵AB=AE,
∴BM=EM=BE,∠BAM=∠EAM,
又∵AE⊥BG,
∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,
∴∠MAE=∠NBG,
設(shè)∠BAM=∠MAE=∠NBG=α,則∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,
∴AB=BG,
∴AE=BG,
在△AME和△BNG中,
,
∴△AME≌△BNG(AAS),
∴ME=NG,
在等腰Rt△CNG中,NG=NC,
∴GC=NG=ME=BE,
∴BE=GC,
∵O是AC的中點(diǎn),
∴OA=OC,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴∠OAF=∠OCE,∠AFO=∠CEO,
∴△AFO≌△CEO(AAS),
∴AF=CE,
∴AD﹣AF=BC﹣EC,即DF=BE,
∴DF=BE=CG.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,E是邊CD的中點(diǎn),連接BE并延長與AD的延長線相交于點(diǎn)F,連接CF.四邊形BDFC是平行四邊形嗎?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知點(diǎn)A、B在雙曲線(x>0)上,AC⊥x軸于C,BD⊥y軸于點(diǎn)D,AC與BD交于點(diǎn)P,P是AC的中點(diǎn),點(diǎn)B的橫坐標(biāo)為b.A與B的坐標(biāo)分別為_____、______(用b與k表示),由此可以猜想AP與CP的數(shù)量關(guān)系是______.
(2)四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)y與y的圖象上,對角線BD∥y軸,且BD⊥AC于點(diǎn)P,P是BD的中點(diǎn),點(diǎn)B的橫坐標(biāo)為4.
①當(dāng)時(shí),判斷四邊形ABCD的形狀并說明理由.
②四邊形ABCD能否成為正方形?若能,直接寫出此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3,以點(diǎn)B為旋轉(zhuǎn)中心,將△ABP按順時(shí)針方向旋轉(zhuǎn)使點(diǎn)A與點(diǎn)C重合,這時(shí)P點(diǎn)旋轉(zhuǎn)到G點(diǎn).
(1)請畫出旋轉(zhuǎn)后的圖形,說出此時(shí)△ABP以點(diǎn)B為旋轉(zhuǎn)中心最少旋轉(zhuǎn)了多少度;
(2)求出PG的長度;
(3)請你猜想△PGC的形狀,并說明理由;
(4)請你計(jì)算∠BGC的角度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接“十一”小長假的購物高峰.某運(yùn)動(dòng)品牌專賣店準(zhǔn)備購進(jìn)甲、乙兩種運(yùn)動(dòng)鞋.其中甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)和售價(jià)如下表:
運(yùn)動(dòng)鞋 | 甲 | 乙 |
進(jìn)價(jià)(元/雙) | m | m﹣20 |
售價(jià)(元/雙) | 240 | 160 |
已知:用3000元購進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用2400元購進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.
(1)求m的值;
(2)要使購進(jìn)的甲、乙兩種運(yùn)動(dòng)鞋共200雙的總利潤(利潤=售價(jià)﹣進(jìn)價(jià))不少于21700元,且不超過22300元,問該專賣店有幾種進(jìn)貨方案?
(3)在(2)的條件下,專賣店準(zhǔn)備對甲種運(yùn)動(dòng)鞋進(jìn)行優(yōu)惠促銷活動(dòng),決定對甲種運(yùn)動(dòng)鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運(yùn)動(dòng)鞋價(jià)格不變.那么該專賣店要獲得最大利潤應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】望江中學(xué)為了了解學(xué)生平均每天“誦讀經(jīng)典”的時(shí)間,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì),并將調(diào)查統(tǒng)計(jì)的結(jié)果分為:每天誦讀時(shí)間t≤20分鐘的學(xué)生記為A類,20分鐘<t≤40分鐘的學(xué)生記為B類,40分鐘<t≤60分鐘的學(xué)生記為C類,t>60分鐘的學(xué)生記為D類四種.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)m=%,n=%,這次共抽查了名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì);
(2)請補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)如果該校共有1200名學(xué)生,請你估計(jì)該校C類學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,O是矩形ABCD的對角線的交點(diǎn),作DE∥AC,CE∥BD,DE、CE相交于點(diǎn)E.求證:
(1)四邊形OCED是菱形.
(2)連接OE,若AD=4,CD=3,求菱形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)P是AC邊上一個(gè)動(dòng)點(diǎn),過P作直線EF∥BC,交∠ACB的平分線于點(diǎn)E,交∠ACB的外角∠ACD平分線于點(diǎn)F.
(1)請說明:PE=PF;
(2)當(dāng)點(diǎn)P在AC邊上運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接AC、BC.點(diǎn)P沿AC以每秒1個(gè)單位長度的速度由點(diǎn)A向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q沿BO以每秒2個(gè)單位長度的速度由點(diǎn)B向點(diǎn)O運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),連接PQ.過點(diǎn)Q作QD⊥x軸,與拋物線交于點(diǎn)D,與BC交于點(diǎn)E,連接PD,與BC交于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)求直線BC的函數(shù)表達(dá)式;
(2)①直接寫出P,D兩點(diǎn)的坐標(biāo)(用含t的代數(shù)式表示,結(jié)果需化簡)
②在點(diǎn)P、Q運(yùn)動(dòng)的過程中,當(dāng)PQ=PD時(shí),求t的值;
(3)試探究在點(diǎn)P,Q運(yùn)動(dòng)的過程中,是否存在某一時(shí)刻,使得點(diǎn)F為PD的中點(diǎn)?若存在,請直接寫出此時(shí)t的值與點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com