【題目】已知直角三角形兩邊x、y的長滿足|x2﹣4|+ =0,則第三邊長為

【答案】
【解析】解:∵|x2﹣4|≥0,
∴x2﹣4=0,y2﹣5y+6=0,
∴x=2或﹣2(舍去),y=2或3,
①當(dāng)兩直角邊是2時(shí),三角形是直角三角形,則斜邊的長為: = ;
②當(dāng)2,3均為直角邊時(shí),斜邊為 =
③當(dāng)2為一直角邊,3為斜邊時(shí),則第三邊是直角,長是 =
【考點(diǎn)精析】本題主要考查了因式分解法和勾股定理的概念的相關(guān)知識點(diǎn),需要掌握已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于概率,下列說法正確的是(
A.莒縣“明天降雨的概率是75%”表明明天莒縣會(huì)有75%的時(shí)間會(huì)下雨
B.隨機(jī)拋擲一枚質(zhì)地均勻的硬幣,落地后一定反面向上
C.在一次抽獎(jiǎng)活動(dòng)中,中獎(jiǎng)的概率是1%,則抽獎(jiǎng)100次就一定會(huì)中獎(jiǎng)
D.同時(shí)拋擲兩枚質(zhì)地均勻硬幣,“一枚硬幣正面向上,一枚硬幣反面向上”的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點(diǎn)B,則△OAC與△BAD的面積之差SOAC﹣SBAD為(

A.36
B.12
C.6
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),AOB=110°BOC=α, OC為邊作等邊三角形OCD,連接AD.

1當(dāng)α=150°時(shí),試判斷AOD的形狀,并說明理由;

2探究:當(dāng)a為多少度時(shí),AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F分別為ABC的邊BCCA的中點(diǎn),延長EFD,使得DF=EF,連接DA、DB、AE

(1)求證:四邊形ACED是平行四邊形;

(2)若AB=AC,試說明四邊形AEBD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四組條件中,不能判定四邊形ABCD是平行四邊形的是  

A. , B. ,

C. , D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對稱軸為x=1,點(diǎn)B坐標(biāo)為(﹣1,0).則下面的四個(gè)結(jié)論:
①2a+b=0;②4a﹣2b+c<0;③ac>0;④當(dāng)y<0時(shí),x<﹣1或x>2.
其中正確的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有A、B、C、D四個(gè)點(diǎn),分別對應(yīng)的數(shù)為a,b,c,d,且滿足a,b是方程|x+7|=1的兩個(gè)解(a<b),且(c﹣12)2|d﹣16|互為相反數(shù).

(1)填空:a=   、b=   、c=   、d=   ;

(2)若線段AB3個(gè)單位/秒的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD1單位長度/秒向左勻速運(yùn)動(dòng),并設(shè)運(yùn)動(dòng)時(shí)間為t秒,A、B兩點(diǎn)都運(yùn)動(dòng)在CD上(不與C,D兩個(gè)端點(diǎn)重合),若BD=2AC,求t得值;

(3)在(2)的條件下,線段AB,線段CD繼續(xù)運(yùn)動(dòng),當(dāng)點(diǎn)B運(yùn)動(dòng)到點(diǎn)D的右側(cè)時(shí),問是否存在時(shí)間t,使BC=3AD?若存在,求t得值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,點(diǎn)C是 的中點(diǎn),∠COB=60°,過點(diǎn)C作CE⊥AD,交AD的延長線于點(diǎn)E

(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案