如圖,已知四邊形ABCD,AD∥BC.點(diǎn)P在直線CD上運(yùn)動(點(diǎn)P和點(diǎn)C,D不重合,點(diǎn)P,A,B不在同一條直線上),若記∠DAP,∠APB,∠PBC分別為.
(1)當(dāng)點(diǎn)P在線段CD上運(yùn)動時(shí),寫出之間的關(guān)系并說出理由;
(2)如果點(diǎn)P在線段CD(或DC)的延長線上運(yùn)動,探究之間的關(guān)系,并選擇其中的一種情況說明理由.
(1)=+;(2)①當(dāng)點(diǎn)P在線段DQ(不含端點(diǎn))時(shí):,②當(dāng)點(diǎn)P在線段DQ(不含端點(diǎn))的延長線時(shí):,③當(dāng)點(diǎn)P落在線段DC的延長線上時(shí):
解析試題分析:(1)過P點(diǎn)作PE∥BC,即可得出之間的關(guān)系;
(2)分三種情況討論:設(shè)直線CD與直線AB相交于點(diǎn)Q
①當(dāng)點(diǎn)P在線段DQ(不含端點(diǎn))時(shí):②當(dāng)點(diǎn)P在線段DQ(不含端點(diǎn))的延長線時(shí): ③當(dāng)點(diǎn)P落在線段DC的延長線上時(shí):
試題解析:(1) =+
過點(diǎn)P作PE∥AD ∥BC,交AB于點(diǎn)E-
∵PE∥AD
∴=∠APE
∵PE∥BC
∴=∠BPE
∴=∠APE+∠BPE=+
(2)分三種情況討論:設(shè)直線CD與直線AB相交于點(diǎn)Q
①當(dāng)點(diǎn)P在線段DQ(不含端點(diǎn))時(shí):
②當(dāng)點(diǎn)P在線段DQ(不含端點(diǎn))的延長線時(shí):
③當(dāng)點(diǎn)P落在線段DC的延長線上時(shí):
選擇一種情況說理正確.
考點(diǎn):平行線的性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,EF∥AD,∠1=∠2,∠BAC=80°,將求∠AGD的過程填寫完整.
∵EF//AD,
∴∠2= ( )
又∵∠1=∠2,
∴∠1=∠3( )
∴AB// ( )
∴∠BAC+ =180°( )
∵∠BAC=80°,
∴∠AGD=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).請將解題過程填寫完整.
解:∵EF∥AD(已知)
∴∠2= _________。ā 。
又∵∠1=∠2(已知)
∴∠1=∠3( 。
∴AB∥ _________ ( 。
∴∠BAC+ _________ =180°( 。
∵∠BAC=70°(已知)
∴∠AGD= _________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
若∠C=,∠EAC+∠FBC=
(1)如圖①,AM是∠EAC的平分線,BN是∠FBC的平分線,若AM∥BN,則與有何關(guān)系?并說明理由.
(2)如圖②,若∠EAC的平分線所在直線與∠FBC平分線所在直線交于P,試探究∠APB與、的關(guān)系是 .(用、表示)
(3)如圖③,若≥,∠EAC與∠FBC的平分線相交于, ;依此類推,則= (用、表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知直線,直線與、分別交于、兩點(diǎn),點(diǎn)是直線上的一動點(diǎn)
如圖,若動點(diǎn)在線段之間運(yùn)動(不與、兩點(diǎn)重合),問在點(diǎn)的運(yùn)動過程中是否始終具有這一相等關(guān)系?試說明理由;
如圖,當(dāng)動點(diǎn)在線段之外且在的上方運(yùn)動(不與、兩點(diǎn)重合),則上述結(jié)論是否仍成立?若不成立,試寫出新的結(jié)論,并說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,那么DG∥BC嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com