(2010•仙桃)如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱(chēng)軸交于M.點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線交于點(diǎn)Q.
(1)求經(jīng)過(guò)B、E、C三點(diǎn)的拋物線的解析式;
(2)是否存在點(diǎn)P,使得以P、Q、M為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

【答案】分析:(1)在Rt△ODC中,根據(jù)射影定理即可求出OB的長(zhǎng),由此可得到B點(diǎn)的坐標(biāo),進(jìn)而可用待定系數(shù)法求出拋物線的解析式;
(2)易知△AOD是等腰Rt△,若以P、Q、M為頂點(diǎn)的三角形與△AOD相似,那么△PQM也必須是等腰Rt△;由于∠QPM≠90°,因此本題分兩種情況:
①PQ為斜邊,M為直角頂點(diǎn);②PM為斜邊,Q為直角頂點(diǎn);
首先求出直線AD的解析式,進(jìn)而可得到M點(diǎn)的坐標(biāo);設(shè)出P點(diǎn)橫坐標(biāo),然后根據(jù)拋物線和直線AD的解析式表示出P、Q的縱坐標(biāo),即可得到PQ的長(zhǎng);在①中,PQ的長(zhǎng)為M、P橫坐標(biāo)差的絕對(duì)值的2倍;在②中,PQ的長(zhǎng)正好等于M、P橫坐標(biāo)差的絕對(duì)值,由此可求出符合條件的P點(diǎn)坐標(biāo);
(3)①若四邊形PQNM是菱形,首先必須滿(mǎn)足四邊形PMNQ是平行四邊形,此時(shí)MN與PQ相等,由此可得到P點(diǎn)坐標(biāo),然后再判斷PQ是否與PM相等即可;
②由于當(dāng)NQ∥PM時(shí),四邊形PMNQ是平行四邊形,因此本題只需考慮MN∥PQ這一種情況;若四邊形PMNQ是等腰梯形且MN、PQ為上下底,那么根據(jù)等腰梯形的對(duì)稱(chēng)性可知:Q、P的縱坐標(biāo)的和應(yīng)該等于N、M的縱坐標(biāo)的和,據(jù)此可求出P、Q的坐標(biāo),然后再判斷QN與PM是否平行即可.
解答:解:(1)在Rt△BDC中,OD⊥BC,
由射影定理,得:OD2=OB•OC;
則OB==1;
∴B(-1,0);
∴B(-1,0),C(4,0),E(0,4);
設(shè)拋物線的解析式為:y=a(x+1)(x-4)(a≠0),則有:
a(0+1)(0-4)=4,a=-1;
∴y=-(x+1)(x-4)=-x2+3x+4;

(2)因?yàn)锳(-2,0),D(0,2);
所以直線AD:y=x+2;
聯(lián)立,解得F(1-,3-),G(1+,3+);
設(shè)P點(diǎn)坐標(biāo)為(x,x+2)(1-<x<1+),則Q(x,-x2+3x+4);
∴PQ=-x2+3x+4-x-2=-x2+2x+2;
易知M(,),
若以P、Q、M為頂點(diǎn)的三角形與△AOD相似,則△PQM為等腰直角三角形;
①以M為直角頂點(diǎn),PQ為斜邊;PQ=2|xM-xP|,即:
-x2+2x+2=2(-x),
解得x=2-,x=2+(不合題意舍去)
∴P(2-,4-);
②以Q為直角頂點(diǎn),PM為斜邊;PQ=|xM-xQ|,
即:-x2+2x+2=-x,
解得x=,x=(不合題意舍去)
∴P(,
故存在符合條件的P點(diǎn),且P點(diǎn)坐標(biāo)為(2-,4-)或();

(3)易知N(),M();
設(shè)P點(diǎn)坐標(biāo)為(m,m+2),
則Q(m,-m2+3m+4);(1-<m<1+
∴PQ=-m2+2m+2,NM=;
①若四邊形PMNQ是菱形,則首先四邊形PMNQ是平行四邊形,有:
MN=PQ,
即:-m2+2m+2=,
解得m=,m=(舍去);
當(dāng)m=時(shí),P(),Q(,
此時(shí)PM=≠M(fèi)N,故四邊形PMNQ不可能是菱形;
②由于當(dāng)NQ∥PM時(shí),四邊形PMNQ是平行四邊形,
所以若四邊形PMNQ是等腰梯形,只有一種情況:PQ∥MN;
依題意,則有:(yN+yM)=(yP+yQ),
+=-m2+3m+4+m+2,
解得m=,m=(舍去);
當(dāng)m=時(shí),P(,),Q(,),此時(shí)NQ與MP不平行,
∴四邊形PMNQ可以是等腰梯形,且P點(diǎn)坐標(biāo)為(,).
點(diǎn)評(píng):此題是二次函數(shù)的綜合題,考查的知識(shí)點(diǎn)有:直角三角形的性質(zhì),二次函數(shù)的確定,等腰三角形、菱形、等腰梯形的判定和性質(zhì)等,同時(shí)還考查了分類(lèi)討論的數(shù)學(xué)思想;要特別注意的是在判定梯形的過(guò)程中,不要遺漏證明另一組對(duì)邊不平行的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(04)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過(guò)點(diǎn)E的直線與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱(chēng)軸交于M.點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線交于點(diǎn)Q.
(1)求經(jīng)過(guò)B、E、C三點(diǎn)的拋物線的解析式;
(2)是否存在點(diǎn)P,使得以P、Q、M為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過(guò)點(diǎn)E的直線與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省江漢油田中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過(guò)點(diǎn)E的直線與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

同步練習(xí)冊(cè)答案