【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

2)寫出點B的坐標(biāo);

3)將△ABC向右平移5個單位長度,向下平移2個單位長度,畫出平移后的圖形△ABC′;

4)計算△ABC′的面積﹒

5)在x軸上存在一點P,使PA+PC最小,直接寫出點P的坐標(biāo).

【答案】(1)詳見解析;(2)B(-2,1);(3)詳見解析;(4)4;(5)P(,0).

【解析】

(1)直接利用已知點位置得出x,y軸的位置;

(2)利用平面直角坐標(biāo)系得出B點坐標(biāo)即可;

(3)直接利用平移的性質(zhì)得出對應(yīng)點位置進(jìn)而得出答案;

(4)利用A′B′C′所在矩形形面積減去周圍三角形面積進(jìn)而得出答案.

(5)C關(guān)于x軸的對稱點D,連接ADx軸一點就為所求點.

(1)如圖所示,∵點A的坐標(biāo)為(﹣4,5,

∴在Ay軸向右平移4個單位,x軸向下平移5個單位得到即可;

(2)B(﹣2,1);

(3)如圖所示:A′B′C′即為所求;

(4)A′B′C′的面積為:3×4×3×2×1×2×2×4=4

(5)作點C關(guān)于x軸的對稱點D(-1,-3),連接ADx軸于一點,該點為所求點.

設(shè)直線AD:y=kx+b,A(-4,5),D(-1,-3)代入

解得:

直線AD:

y=0,x=

P點坐標(biāo)為(,0)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2

2)若學(xué)校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊OAB的邊長為2,點Bx軸上,反比例函數(shù)的圖象經(jīng)過A點,將OAB繞點O順時針旋轉(zhuǎn)α(0°<α<360°),使點A落在雙曲線上,則α________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(53),B(65),C(4,6)

(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo).

(2)將△A1B1C1向左平移6個單位,再向上平移5個單位,畫出平移后得到的△A2B2C2,并寫出點B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標(biāo)是2:

(1)求反比例函數(shù)的表達(dá)式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商場銷售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下.若每千克漲價1元,日銷售量將減少20千克.

(1)現(xiàn)該商場要保證每天盈利6000元,同時又要使顧客得到實惠,那么每千克應(yīng)漲價多少元?

(2)每千克水果漲價多少元時,商場每天獲得的利潤最大?獲得的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB⊙O的直徑,C⊙O上一點,如圖,AB=12,BC=4.BH⊙O相切于點B,過點CBH的平行線交AB于點E.

(1)CE的長;

(2)延長CEF,使EF=,連接BF并延長BF⊙O于點G,求BG的長;

(3)在(2)的條件下,連接GC并延長GCBH于點D,求證:BD=BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①所示是邊長為的大正方形中有一個邊長為的小正方形.圖②是由圖①中陰影部分拼成的一個長方形.

1)設(shè)圖①中陰影部分的面積為,圖②中陰影部分的面積為,請用含的式子表示: , ;(不必化簡)

2)以上結(jié)果可以驗證的乘法公式是 ;

3)利用(2)中得到的公式,計算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

若該方程有實數(shù)根,求的取值范圍.

若該方程一個根為,求方程的另一個根.

查看答案和解析>>

同步練習(xí)冊答案