(2013•貴陽)在△ABC中,BC=a,AC=b,AB=c,設(shè)c為最長邊,當(dāng)a2+b2=c2時(shí),△ABC是直角三角形;當(dāng)a2+b2≠c2時(shí),利用代數(shù)式a2+b2和c2的大小關(guān)系,探究△ABC的形狀(按角分類).
(1)當(dāng)△ABC三邊分別為6、8、9時(shí),△ABC為
銳角
銳角
三角形;當(dāng)△ABC三邊分別為6、8、11時(shí),△ABC為
鈍角
鈍角
三角形.
(2)猜想,當(dāng)a2+b2
c2時(shí),△ABC為銳角三角形;當(dāng)a2+b2
c2時(shí),△ABC為鈍角三角形.
(3)判斷當(dāng)a=2,b=4時(shí),△ABC的形狀,并求出對(duì)應(yīng)的c的取值范圍.
分析:(1)利用勾股定理列式求出兩直角邊為6、8時(shí)的斜邊的值,然后作出判斷即可;
(2)根據(jù)(1)中的計(jì)算作出判斷即可;
(3)根據(jù)三角形的任意兩邊之和大于第三邊求出最長邊c點(diǎn)的最大值,然后得到c的取值范圍,然后分情況討論即可得解.
解答:解:(1)兩直角邊分別為6、8時(shí),斜邊=
62+82
=10,
∴△ABC三邊分別為6、8、9時(shí),△ABC為銳角三角形;
當(dāng)△ABC三邊分別為6、8、11時(shí),△ABC為鈍角三角形;
故答案為:銳角;鈍角;

(2)當(dāng)a2+b2>c2時(shí),△ABC為銳角三角形;
當(dāng)a2+b2<c2時(shí),△ABC為鈍角三角形;
故答案為:>;<;

(3)∵c為最長邊,2+4=6,
∴4≤c<6,
a2+b2=22+42=20,
①a2+b2>c2,即c2<20,0<c<2
5
,
∴當(dāng)4≤c<2
5
時(shí),這個(gè)三角形是銳角三角形;
②a2+b2=c2,即c2=20,c=2
5
,
∴當(dāng)c=2
5
時(shí),這個(gè)三角形是直角三角形;
③a2+b2<c2,即c2>20,c>2
5
,
∴當(dāng)2
5
<c<6時(shí),這個(gè)三角形是鈍角三角形.
點(diǎn)評(píng):本題考查了勾股定理,勾股定理逆定理,讀懂題目信息,理解理解三角形為銳角三角形、直角三角形、鈍角三角形時(shí)的三條邊的數(shù)量關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)在端午節(jié)到來之前,兒童福利院對(duì)全體小朋友愛吃哪幾種粽子作調(diào)查,以決定最終買哪種粽子.下面的調(diào)查數(shù)據(jù)中最值得關(guān)注的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)在矩形ABCD中,AB=6,BC=4,有一個(gè)半徑為1的硬幣與邊AB、AD相切,硬幣從如圖所示的位置開始,在矩形內(nèi)沿著邊AB、BC、CD、DA滾動(dòng)到開始的位置為止,硬幣自身滾動(dòng)的圈數(shù)大約是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)在一個(gè)不透明的袋子中有10個(gè)除顏色外均相同的小球,通過多次摸球?qū)嶒?yàn)后,發(fā)現(xiàn)摸到白球的頻率約為40%,估計(jì)袋中白球有
4
4
 個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)在一次綜合實(shí)踐活動(dòng)中,小明要測(cè)某地一座古塔AE的高度,如圖,已知塔基AB的高為4m,他在C處測(cè)得塔基頂端B的仰角為30°,然后沿AC方向走5m到達(dá)D點(diǎn),又測(cè)得塔頂E的仰角為50°.(人的身高忽略不計(jì))
(1)求AC的距離;(結(jié)果保留根號(hào))
(2)求塔高AE.(結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案