【題目】如圖,在△ABC中,∠C=90°,∠B=32°,以A為圓心,任意長為半徑畫弧分別交AB , AC于點M和N , 再分別以M , N為圓心,大于 MN的長為半徑畫弧,兩弧交于點P , 連接AP并延長交BC于點D , 則下列說法:
①AD是∠BAC的平分線;
②CD是△ADC的高;
③點D在AB的垂直平分線上;
④∠ADC=61°.
其中正確的有( 。
A.1個
B.2個
C.3個
D.4個
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,矩形ABCD中,AB=8,AD=6,點E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列的調查中,選取的樣本具有代表性的有 ( )
A.為了解某地區(qū)居民的防火意識,對該地區(qū)的初中生進行調查
B.為了解某校1200名學生的視力情況,隨機抽取該校120名學生進行調查
C.為了解某商場的平均晶營業(yè)額,選在周末進行調查
D.為了解全校學生課外小組的活動情況,對該校的男生進行調查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在方格紙內將△ABC經過一次平移后得到△A′B′C′,圖中標出了點C的對應點C′.(利用網格點和三角板畫圖)
(1)畫出平移后的△A′B′C′.
(2)畫出AB邊上的高線CD;
(3)畫出BC邊上的中線AE;
(4)若連接BB′、CC′,則這兩條線段之間的關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察探究,解決問題.在四邊形ABCD中,點E、F、G、H分別是邊AB、BC、CD、DA的中點,順次連接E、F、G、H得到的四邊形EFGH叫做中點四邊形.
(1)如圖1,求證:中點四邊形EFGH是平行四邊形;
(2)請你探究并填空:
①當四邊形ABCD變成平行四邊形時,它的中點四邊形是;
②當四邊形ABCD變成矩形時,它的中點四邊形是;
③當四邊形ABCD變成正方形時,它的中點四邊形是;
(3)如圖2,當中點四邊形EFGH為矩形時,對角線EG與FH相交于點O,P為EH上的動點,過點P作PM⊥EG,PN⊥FH,垂足分別為M、N,若EF=a,F(xiàn)G=b,請判斷PM+PN的長是否為定值?若是,求出此定值;若不是,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( )
A. 某事件發(fā)生的概率為1,則它必然會發(fā)生
B. 某事件發(fā)生的概率為0,則它必然不會發(fā)生
C. 拋一個普通紙杯,杯口不可能向上
D. 從一批產品中任取一個為次品是可能的
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com