【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF:DC=1:4,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長(zhǎng)為10,求BG的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)25
【解析】
(1)由題意可得AE=DE=AD=AB,DF=CD=AD,即可證△ABE∽△DEF;
(2)由題意可得AE=DE=5,DF=,CF=,由相似三角形的性質(zhì)可得CG=15,即可求BG的長(zhǎng).
證明:∵四邊形ABCD是正方形,
∴∠A=∠D=90°,AB=AD=CD,
∵AE=ED,DF:DC=1:4,
∴AE=DE=AD=AB,DF=CD=AD,
∵,=
∴=,且∠A=∠D,
∴△ABE∽△DEF
(2)∵CB=AD=CD=10,
∴AE=DE=5,DF=,CF=
∵AD∥BC
∴△DEF∽△CGF
∴=,
∴CG=15
∴BG=BC+CG=10+15=25
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為大力弘揚(yáng)“奉獻(xiàn)、友愛(ài)、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,合肥市某中學(xué)利用周末時(shí)間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個(gè)志愿服務(wù)活動(dòng)(每人只參加一個(gè)活動(dòng)),九年級(jí)某班全班同學(xué)都參加了志愿服務(wù),班長(zhǎng)為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)請(qǐng)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求扇形統(tǒng)計(jì)圖中,網(wǎng)絡(luò)文明部分對(duì)應(yīng)的圓心角的度數(shù);
(3)小明和小麗參加了志愿服務(wù)活動(dòng),請(qǐng)用樹狀圖或列表法求出他們參加同一服務(wù)活動(dòng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某綠色種植基地種植的農(nóng)產(chǎn)品喜獲豐收,此基地將該農(nóng)產(chǎn)品以每千克5元出售,這樣每天可售出1500千克,但由于同類農(nóng)產(chǎn)品的大量上市,該基地準(zhǔn)備降價(jià)促銷,經(jīng)調(diào)查發(fā)現(xiàn),在本地該農(nóng)產(chǎn)品若每降價(jià)元,每天可多售出100千克當(dāng)本地銷售單價(jià)為元時(shí),銷售量為y千克.
請(qǐng)直接寫出y和x的函數(shù)關(guān)系式;
求在本地當(dāng)銷售單價(jià)為多少時(shí)可以獲得最大銷售收入?最大銷售收入是多少?
若該農(nóng)產(chǎn)品不能在一周內(nèi)出售,將會(huì)因變質(zhì)而不能出售依此情況,基地將10000千克該農(nóng)產(chǎn)品運(yùn)往外地銷售已知這10000千克農(nóng)產(chǎn)品運(yùn)到了外地,并在當(dāng)天全部售完外地銷售這種農(nóng)產(chǎn)品的價(jià)格比在本地取得最大銷售收入時(shí)的單價(jià)還高,而在運(yùn)輸過(guò)程中有損耗,這樣這一天的銷售收入為42000元請(qǐng)計(jì)算出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把矩形ABCD沿AC折疊,使點(diǎn)D與點(diǎn)E重合,AE交BC于點(diǎn)F,過(guò)點(diǎn)E作EG∥CD交AC于點(diǎn)G,交CF于點(diǎn)H,連接DG.
(1)求證:四邊形ECDG是菱形;
(2)若DG=6,AG=,求EH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(xk)2+h.已知球與O點(diǎn)的水平距離為6m時(shí),達(dá)到最高2.6m,球網(wǎng)與O點(diǎn)的水平距離為9m.高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是( )
A. 球不會(huì)過(guò)網(wǎng) B. 球會(huì)過(guò)球網(wǎng)但不會(huì)出界
C. 球會(huì)過(guò)球網(wǎng)并會(huì)出界 D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測(cè)得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)不透明的口袋中裝有5個(gè)只有顏色不同的球,其中2個(gè)白球,3個(gè)黑球第一次隨機(jī)摸出一個(gè)球,不放回,再隨機(jī)摸出一個(gè)球.
Ⅰ求第一次摸到黑球的概率;
Ⅱ請(qǐng)用列表或畫樹狀圖等方法求兩次都摸到黑球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程(m+1)x2+2mx+m﹣3=0總有實(shí)數(shù)根.
(1)求m的取值范圍;
(2)在(1)的條件下,當(dāng)m在取值范圍內(nèi)取最小整數(shù)時(shí),求原方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題9分)據(jù)報(bào)道,“國(guó)際剪刀石頭布協(xié)會(huì)”提議將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目.某校學(xué)生會(huì)想知道學(xué)生對(duì)這個(gè)提議的了解程度,隨機(jī)抽取部分學(xué)生進(jìn)行了一次問(wèn)卷調(diào)查,并根據(jù)收集到的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有___名,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為___;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中對(duì)將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目的提議達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(3)“剪刀石頭布”比賽時(shí)雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢(shì)中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢(shì),則算打平.若小剛和小明兩人只比賽一局,請(qǐng)用樹狀圖或列表法求兩人打平的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com