【題目】如圖,四邊形ABCD中AC平分∠BAD,∠ADC=∠ACB=90,E為AB的中點(diǎn),AC與DE交于點(diǎn)F.
(1)求證: =AB·AD;
(2)求證:CE//AD;
(3)若AD=6, AB=8.求 的值.
【答案】(1)證明見解析; (2)證明見解析; (3) .
【解析】試題分析:(1)由AC平分∠BAD,∠ADC=∠ACB=90°,可證得△ADC∽△ACB,然后由相似三角形的對(duì)應(yīng)邊成比例,證得AC2=ABAD;
(2)由E為AB的中點(diǎn),根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半,即可證得CE=AB=AE,繼而可證得∠DAC=∠ECA,得到CE∥AD;
(3)易證得△AFD∽△CFE,然后由相似三角形的對(duì)應(yīng)邊成比例,求得的值.
試題解析:(1)證明:∵AC平分∠BAD,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=ABAD;
(2)證明:∵E為AB的中點(diǎn),∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;
(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×8=4,∵AD=6,∴6:4=AF:CF,∴==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點(diǎn).
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與y軸交于點(diǎn)C,與x軸的兩個(gè)交點(diǎn)分別為A(-4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)P在拋物線上,連接PC、PB,若△PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉辦以“保護(hù)環(huán)境,治理霧霾,從我做起”為主題的演講比賽,現(xiàn)將所有比賽成績(jī)(得分取整數(shù),滿分為100分)進(jìn)行整理后分為5組,并繪制成如圖所示的頻數(shù)直方圖.根據(jù)頻數(shù)分布直方圖提供的信息,下列結(jié)論:①參加比賽的學(xué)生共有52人;②比賽成績(jī)?yōu)?/span>65分的學(xué)生有12人;③比賽成績(jī)的中位數(shù)落在70.5~80.5分這個(gè)分?jǐn)?shù)段;④如果比賽成績(jī)?cè)?/span>80分以上(不含80分)可以獲得獎(jiǎng)勵(lì),則本次比賽的獲獎(jiǎng)率約為30.8%.正確的是________.(把所有正確結(jié)論的序號(hào)都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉興市2010~2014年社會(huì)消費(fèi)品零售總額及增速統(tǒng)計(jì)圖如下:
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)求嘉興市2010~2014年社會(huì)消費(fèi)品零售總額增速這組數(shù)據(jù)的中位數(shù).
(2)求嘉興市近三年(2012~2014年)的社會(huì)消費(fèi)品零售總額這組數(shù)據(jù)的平均數(shù).
(3)用適當(dāng)?shù)姆椒A(yù)測(cè)嘉興市2015年社會(huì)消費(fèi)品零售總額(只要求列出算式,不必計(jì)算出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光明且溫度為18的條件下生長(zhǎng)最快的新品種.如圖,是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y()隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段足雙曲線 的一部分,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)恒溫系統(tǒng)這天保持大棚內(nèi)溫度18的時(shí)間有多少小時(shí)?
(2)求k值;
(3)當(dāng)x=15時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(-1,2),且過(guò)點(diǎn)(0, ).
(1)求二次函數(shù)的解析式,并在圖中畫出它的圖象;
(2)求證:對(duì)任意實(shí)數(shù)m,點(diǎn)M(m,-m2)都不在這個(gè)二次函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),畫出圖象并根據(jù)函數(shù)圖象回答下列問(wèn)題:
(1)列表、描點(diǎn)、連線
x | |||||
(2)的兩個(gè)解是多少?
(3)x取何值時(shí),y>0?
(4)x取何值時(shí),拋物線在x軸上或下方?
(5)拋物線與直線y=k有唯一的交點(diǎn),則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1、l2分別交于A、B兩點(diǎn),點(diǎn)P在直線AB上.
(1)試說(shuō)明∠1,∠2,∠3之間的關(guān)系式;(要求寫出推理過(guò)程)
(2)如果點(diǎn)P在A、B兩點(diǎn)之間(點(diǎn)P和A、B不重合)運(yùn)動(dòng)時(shí),試探究∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?(只回答)
(3)如果點(diǎn)P在A、B兩點(diǎn)外側(cè)(點(diǎn)P和A、B不重合)運(yùn)動(dòng)時(shí),試探究∠1,∠2,∠3之間的關(guān)系.(要求寫出推理過(guò)程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com