【題目】如圖,在菱形ABCD中,邊長為10,A=60°,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去…則四邊形A2B2C2D2的周長是 ;四邊形A2015B2015C2015D2015的周長

【答案】20,

【解析

試題菱形ABCD中,邊長為10,A=60°,順次連結菱形ABCD各邊中點,

∴△AA1D1是等邊三角形,四邊形A2B2C2D2是菱形,

A1D1=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=5,

四邊形A2B2C2D2的周長是:5×4=20,

同理可得出:A3D3=5×,C3D3=C1D1=×5

A5D5=5×(2,C5D5=C3D3=(2×5

四邊形A2015B2015C2015D2015的周長是:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知△ABC中,AB=3,AC=4,BC=5,作∠ABC的角平分線交AC于D,以D為圓心,DA為半徑作圓,與射線交于點E、F.有下列結論: ①△ABC是直角三角形;②⊙D與直線BC相切;③點E是線段BF的黃金分割點;④tan∠CDF=2.
其中正確的結論有(

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用四個長為m,寬為n的相同長方形按如圖方式拼成一個正方形.

(1).請用兩種不同的方法表示圖中陰影部分的面積.

方法①:

方法②:

(2). (1)可得出2, ,4mn這三個代數(shù)式之間的一個等量關系為:

(3)利用(2)中得到的公式解決問題:已知2a+b=6,ab=4,試求的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了鼓勵居民節(jié)約用水,某市自來水公司對每戶月用水量進行計費,每戶每月用水量在規(guī)定噸數(shù)以下的收費標準相同;規(guī)定噸數(shù)以上的超過部分收費標準相同,以下是小明家月份用水量和交費情況:

月份

用水量(噸)

用(元)

根據(jù)表格中提供的信息,回答以下問題:

求出規(guī)定噸數(shù)和兩種收費標準;

若小明家月份用水噸,則應繳多少元?

若小明家月份繳水費元,則月份用水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,分別以AC,BC為邊作等邊△ACD和等邊△BCE.設△ACD、△BCE、△ABC的面積分別是S1、S2、S3 , 現(xiàn)有如下結論:
①S1:S2=AC2:BC2;
②連接AE,BD,則△BCD≌△ECA;
③若AC⊥BC,則S1S2= S32
其中結論正確的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,O為正方形對角線的交點,BE平分DBC,交DC于點E,延長BC到點F,使CF=CE,連結DF,交BE的延長線于點G,連結OG

(1)求證:BCE≌△DCF

(2)判斷OG與BF有什么關系,證明你的結論

(3)若DF2=8-4,求正方形ABCD的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC的角平分線AD交BC于E,交△ABC的外接圓⊙O于D.
(1)求證:△ABE∽△ADC;
(2)請連接BD,OB,OC,OD,且OD交BC于點F,若點F恰好是OD的中點.求證:四邊形OBDC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=mx+n與,其中m≠0,n≠0,那么它們在同一坐標系中的圖象可能是( )

A B C D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某運輸隊要運300 t物資到江邊防洪.

(1)運輸時間t(單位:h)與運輸速度v(單位:t/h)之間有怎樣的函數(shù)關系式?

(2)運了一半時,接到防洪指揮部命令,剩下的物資要在2 h之內運到江邊,則運輸速度至少為多少?

查看答案和解析>>

同步練習冊答案