【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個(gè)說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
【答案】B
【解析】可設(shè)大正方形邊長為a,小正方形邊長為b,所以據(jù)題意可得a2=49,b2="4;"
根據(jù)直角三角形勾股定理得a2=x2+y2,所以x2+y2=49,式①正確;
因?yàn)槭撬膫(gè)全等三角形,所以有x=y+2,所以x-y=2,式②正確;
根據(jù)三角形面積公式可得S△=xy/2,而大正方形的面積也等于四個(gè)三角形面積加上小正方形的面積,所以4*(xy/2)+4=49,化簡得2xy+4=49,式③正確;
而據(jù)式④和式②得2x=11,x=5.5,y=3.5,將x,y代入式①或③都不正確,因而式④不正確。
綜上所述,這一題的正確答案為B。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分別是AD、CD的中點(diǎn),連接BE、BF、EF.若四邊形ABCD的面積為6,則△BEF的面積為( )
A.2
B.
C.
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在線段BG上,四邊形ABCD和四邊形DEFG都是正方形,面積分別是10和19,則△CDE的面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D是BC邊上一點(diǎn),以DB為直徑的⊙O經(jīng)過AB的中點(diǎn)E,交AD的延長線于點(diǎn)F,連結(jié)EF.
(1)求證:∠1=∠F.
(2)若sinB= ,EF=2 ,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1過點(diǎn)A(0,4),點(diǎn)D(4,0),直線l2:與x軸交于點(diǎn)C,兩直線,相交于點(diǎn)B.
(1)求直線的解析式和點(diǎn)B的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時(shí)針旋轉(zhuǎn)45°得圖②,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com