(2010•綿陽)如圖,一副三角板拼在一起,O為AD的中點,AB=a.將△ABO沿BO對折于△A′BO,M為BC上一動點,則A′M的最小值為   
【答案】分析:根據(jù)折疊的性質(zhì)知AB=A′B=a;而O是Rt△ABD斜邊AD的中點,則有AO=OB,由此可證得△ABO是等邊三角形,那么∠A′BO=∠ABO=60°,進而可求出∠A′BM=15°;當A′M最小時,A′M⊥BC,此時△A′BM是直角三角形,取A′B的中點N,連接MN,那么∠A′NM=30°,A′N=MN=A′B=a;過M作A′B的垂線,設(shè)垂足為H,在Rt△MNH中,根據(jù)∠A′NM的度數(shù)即可表示出NH,MH的長,進而可求出A′H的長,即可在Rt△A′MH中,根據(jù)勾股定理求出A′M的長.
解答:解:由折疊的性質(zhì)知:AB=A′B=a,∠ABO=∠A′BO;
∵O是Rt△ABD斜邊AD的中點,
∴OA=OB,即△ABO是等邊三角形;
∴∠ABO=∠A′BO=60°;
∵∠ABD=90°,∠CBD=45°,
∴∠ABC=∠ABD+∠CBD=135°,
∴∠A′BM=135°-120°=15°;
易知當A′M⊥BC時,A′M最短;
過M作MH⊥A′B于H,取A′B的中點N,連接MN,如右下圖;
在Rt△A′BM中,N是斜邊A′B的中點,則BN=NM=A′N=a,∠B=∠NMB=15°;
∴∠A′NM=30°;
∴MH=MN=a,
∴NH==a;
∴A′H=A′N-NH=a;
由勾股定理得:A′M===a.
點評:此題主要考查了折疊的性質(zhì)、直角三角形的性質(zhì)以及勾股定理的應(yīng)用,能夠正確的構(gòu)建出含特殊角的直角三角形是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年3月浙江省寧波市七中九年級月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•綿陽)如圖,拋物線y=ax2+bx+4與x軸的兩個交點分別為A(-4,0)、B(2,0),與y軸交于點C,頂點為D.E(1,2)為線段BC的中點,BC的垂直平分線與x軸、y軸分別交于F、G.
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;
(2)在直線EF上求一點H,使△CDH的周長最小,并求出最小周長;
(3)若點K在x軸上方的拋物線上運動,當K運動到什么位置時,△EFK的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2010•綿陽)如圖,已知正比例函數(shù)y=ax(a≠0)的圖象與反比例函致(k≠0)的圖象的一個交點為A(-1,2-k2),另一個交點為B,且A、B關(guān)于原點O對稱,D為OB的中點,過點D的線段OB的垂直平分線與x軸、y軸分別交于C、E.
(1)寫出反比例函數(shù)和正比例函數(shù)的解析式;
(2)試計算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•綿陽)如圖,拋物線y=ax2+bx+4與x軸的兩個交點分別為A(-4,0)、B(2,0),與y軸交于點C,頂點為D.E(1,2)為線段BC的中點,BC的垂直平分線與x軸、y軸分別交于F、G.
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;
(2)在直線EF上求一點H,使△CDH的周長最小,并求出最小周長;
(3)若點K在x軸上方的拋物線上運動,當K運動到什么位置時,△EFK的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2010•綿陽)如圖,已知正比例函數(shù)y=ax(a≠0)的圖象與反比例函致(k≠0)的圖象的一個交點為A(-1,2-k2),另一個交點為B,且A、B關(guān)于原點O對稱,D為OB的中點,過點D的線段OB的垂直平分線與x軸、y軸分別交于C、E.
(1)寫出反比例函數(shù)和正比例函數(shù)的解析式;
(2)試計算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省綿陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•綿陽)如圖,拋物線y=ax2+bx+4與x軸的兩個交點分別為A(-4,0)、B(2,0),與y軸交于點C,頂點為D.E(1,2)為線段BC的中點,BC的垂直平分線與x軸、y軸分別交于F、G.
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;
(2)在直線EF上求一點H,使△CDH的周長最小,并求出最小周長;
(3)若點K在x軸上方的拋物線上運動,當K運動到什么位置時,△EFK的面積最大?并求出最大面積.

查看答案和解析>>

同步練習(xí)冊答案