【題目】閱讀材料:求值:1+2+22+23+24++22013

解:設(shè)S=1+2+22+23+24++22013.將等式兩邊同時乘以2,得

2S=2+22+23+24++22013+22014

將下式減去上式,得2S﹣S=22014﹣1.

S=1+2+22+23+24++22013=22014﹣1.

請你仿照此法計算1+3+32+33+34++32018的值是(  )

A. 32018﹣1 B. C. 32019﹣1 D.

【答案】D

【解析】

利用方程的思想解決問題,設(shè)S=1+3+32+33+34+…+22018.將等式兩邊同時乘以33S=3+32+33+34+…+32018+32019,如果把兩式相減求出S即可,

設(shè)S=1+3+32+33+34+…+22018.將等式兩邊同時乘以3,得

3S=3+32+33+34+…+32018+32019

將下式減去上式,得3S﹣S=32019﹣1.

S=1+3+32+33+34++32018=

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線,AE∥BC,CE⊥AE,垂足為E.

(1)求證:△ABD≌△CAE;
(2)連接DE,線段DE與AB之間有怎樣的位置和數(shù)量關(guān)系?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,求水管AB的長;

(2)如圖2,在△ABC中,D是BC邊上的點,已知AB=13,AD=12,AC=15,BD=5,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等邊三角形,DBC邊上的一個動點(點D不與BC重合)△ADF是以AD為邊的等邊三角形,過點FBC的平行線交射線AC于點E,連接BF

1)如圖1,求證:△AFB≌△ADC;

2)請判斷圖1中四邊形BCEF的形狀,并說明理由;

3)若D點在BC 邊的延長線上,如圖2,其它條件不變,請問(2)中結(jié)論還成立嗎?如果成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口圓的直徑EF長為10cm,母線OE(OF)長為10cm.在母線OF上的點A處有一塊爆米花殘渣,且FA=2cm,一只螞蟻從杯口的點E處沿圓錐表面爬行到A點,則此螞蟻爬行的最短距離cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(﹣1,0)、B(3,0)、N(2,3)三點,且與y軸交于點C.

(1)求這個二次函數(shù)的解析式,并寫出頂點M及點C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P是這個二次函數(shù)的對稱軸上一動點,請?zhí)剿鳎菏欠翊嬖谶@樣的點P,使以點P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC的兩條高BE、CD相交于點O,且OBOC,A=60°.

(1)求證:△ABC是等邊三角形;

(2)判斷點O是否在∠BAC的平分線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為對角線AC、BD的交點,點E為BC上一點,連接EO,并延長交AD于點F,則圖中全等三角形共有(
A.3對
B.4對
C.5對
D.6對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的運算程序中,若開始輸入的x值為48,我們發(fā)現(xiàn)第一次輸出的結(jié)果為24,第二次輸出輸出的結(jié)果為12,…則第2014次輸出的結(jié)果為_____

查看答案和解析>>

同步練習(xí)冊答案