【題目】對于二次函數(shù)yx23x+2和一次函數(shù)y=﹣2x+4,把ytx23x+2+1t)(﹣2x+4)稱為這兩個函數(shù)的再生二次函數(shù),其中t是不為零的實數(shù),其圖象記作拋物線L.現(xiàn)有點A2,0)和拋物線L上的點B(﹣1,n),請完成下列任務(wù):

(嘗試)

1)當(dāng)t2時,拋物線ytx23x+2+1t)(﹣2x+4)的頂點坐標(biāo)為   

2)判斷點A是否在拋物線L上;

3)求n的值;

(發(fā)現(xiàn))

通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線L總過定點,坐標(biāo)為   

(應(yīng)用)

二次函數(shù)y=﹣3x2+5x+2是二次函數(shù)yx23x+2和一次函數(shù)y=﹣2x+4的一個再生二次函數(shù)嗎?如果是,求出t的值;如果不是,說明理由.

【答案】[嘗試]1)(1,﹣2);(2)點A在拋物線L上;(3n=6;[發(fā)現(xiàn)]20,(﹣1,6);[應(yīng)用]不是,理由見解析.

【解析】

[嘗試]
1)將t的值代入再生二次函數(shù)中,通過配方可得到頂點的坐標(biāo);
2)將點A的坐標(biāo)代入拋物線L直接進(jìn)行驗證即可;
3)已知點B在拋物線L上,將該點坐標(biāo)代入拋物線L的解析式中直接求解,即可得到n的值.
[發(fā)現(xiàn)]
將拋物線L展開,然后將含t值的式子整合到一起,令該式子為0(此時無論t取何值都不會對函數(shù)值產(chǎn)生影響),即可求出這個定點的坐標(biāo).
[應(yīng)用]
[發(fā)現(xiàn)]中得到的兩個定點坐標(biāo)代入二次函數(shù)y=-3x2+5x+2中進(jìn)行驗證即可.

解:[嘗試]

1t2代入拋物線L中,得:

ytx23x+2+1t)(﹣2x+4)=2x24x2x122,

此時拋物線的頂點坐標(biāo)為:(1,﹣2).

2x2代入ytx23x+2+1t)(﹣2x+4),得 y0

A2,0)在拋物線L上.

3)將x=﹣1代入拋物線L的解析式中,得:

ntx23x+2+1t)(﹣2x+4)=6

[發(fā)現(xiàn)]

將拋物線L的解析式展開,得:

ytx23x+2+1t)(﹣2x+4)=tx2)(x+1)﹣2x+4

當(dāng)x=2時,y=0,當(dāng)x=-1時,y=6,與t無關(guān),

拋物線L必過定點(2,0)、(﹣1,6).

[應(yīng)用]

x2代入y=﹣3x2+5x+2y0,即點A在拋物線上.

x=﹣1代入y=﹣3x2+5x+2,計算得:y=﹣6≠6,

即可得拋物線y=﹣3x2+5x+2不經(jīng)過點B,

∴二次函數(shù)y=﹣3x2+5x+2不是二次函數(shù)yx23x+2和一次函數(shù)y=﹣2x+4的一個再生二次函數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:在1nn ≥2)這n個自然數(shù)中,每次取兩個數(shù)(不分順序),使得所取兩數(shù)之和大于n,共有多少種取法?

探究:不妨設(shè)有m種取法,為了探究mn的關(guān)系,我們先從簡單情形入手,再逐次遞進(jìn),最后猜想得出結(jié)論.

探究一:在122個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于2,有多少種取法?

根據(jù)題意,有下列取法:1+2,共1種取法.

所以,當(dāng)n=2時,m=1.

探究二:在133個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于3,有多少種取法?

根據(jù)題意,有下列取法:1+3,2+3,共2種取法.

所以,當(dāng)n=3時,m=2.

探究三:在144個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于4,有多少種取法?

根據(jù)題意,有下列取法:1+4,2+43+4,2+3,共有3+1=4種取法.

所以,當(dāng)n=4時,m=3+1=4.

探究四:在155個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于5,有多少種取法?

根據(jù)題意,有下列取法:1+5 2+5, 3+5, 4+5,2+43+4,共有4+2=6種不同的取法.

所以,當(dāng)n=5時,m=4+2=6.

探究五:在166個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于6,有多少種不同的取法?(仿照上述探究方法,寫出解答過程)

探究六:在177個自然數(shù)中,每次取兩個不同的數(shù),使得所取的兩個數(shù)之和大于7,共有 種取法?(直接寫出結(jié)果)

不妨繼續(xù)探究n=8,9,···時,mn的關(guān)系.

結(jié)論:在1nn個自然數(shù)中,每次取兩個數(shù),使得所取的兩個數(shù)字之和大于n,當(dāng)n為偶數(shù)時,共有___種取法;當(dāng)n為奇數(shù)時,共有___種取法;(只填最簡算式)

應(yīng)用:(1)各邊長都是自然數(shù),最大邊長為11的不等邊三角形共有

2)各邊長都是自然數(shù),最大邊長為12的三角形共有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點Cy軸正半軸上的一個動點,拋物線yax25ax+4aa是常數(shù),且a0)過點C,與x軸交于點A、B,點A在點B的左邊.連接AC,以AC為邊作等邊三角形ACD,點D與點O在直線AC兩側(cè).

1)求點A,B的坐標(biāo);

2)當(dāng)CDx軸時,求拋物線的函數(shù)表達(dá)式;

3)連接BD,當(dāng)BD最短時,請直接寫出拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進(jìn)價分別為 2000 元,1700 元的AB兩種型號的凈水器,下表是近兩周的銷售情況:

1)求A,B兩種型號的凈水器的銷售單價;

2)若電器公司準(zhǔn)備用不多于 54000 元的金額采購這兩種型號的凈水器共 30 臺,求 A種型號的凈水器最多能采購多少臺?

3)在(2)的條件下,公司銷售完這 30 臺凈水器能否實現(xiàn)利潤超過12800 元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,AB為切點,∠OAB30°.

1)求∠APB的度數(shù);

2)當(dāng)OA3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的⊙OBC于點D,過點DDEAC于點E,延長CA交⊙O于點F

1)求證:DE是⊙O切線;

2)若AB10cm,DE+EA6cm,求AF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABCD的頂點B,Cx軸上,A,D兩點分別在反比例函數(shù)y=﹣x0)與yx0)的圖象上,若ABCD的面積為4,則k的值為:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.

下面有三個推斷:

①當(dāng)投擲次數(shù)是500時,計算機(jī)記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實驗次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計釘尖向上的概率是0.618;

③若再次用計算機(jī)模擬實驗,則當(dāng)投擲次數(shù)為1000時,釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一批單價為16元的日用品.若按每件23元的價格銷售,每月能賣出270件;若按每件28元的價格銷售,每月能賣出120件;若規(guī)定售價不得低于23元,假定每月銷售件數(shù)y()與價格x(元/件)之間滿足一次函數(shù).

1)試求yx之間的函數(shù)關(guān)系式.

2)在商品不積壓且不考慮其他因素的條件下,銷售價格定為多少時,才能使每月的毛利潤w最大?每月的最大毛利潤為多少?

3)若要使某月的毛利潤為1800元,售價應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊答案